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EARNING OBJECTIVES

After going through this unit, you will be able to

describe sets and their representations

identify empty set, finite and infinite sets

define subsets, super sets, power sets, universal set

describe the use of Venn diagram for geometrical description of

sets
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Sets

® llustrate the set operations of union, intersection, difference and
complement
® know the different algebraic laws of set-operations

® llustrate the application of sets in solving practical problems.

1.2 INTRODUCTION

One of the widely used concepts in present day Mathematics is the
concept of Sets. It is considered the language of modern Mathematics. The
whole structure of Pure or Abstract Mathematics is based on the concept
of sets. German mathematician Georg Cantor (1845-1918) developed the
theory of sets and subsequently many branches of modern Mathematics have
been developed based on this theory. In this unit, preliminary concepts of

sets, set operations and some ideas on its practical utility will be introduced.

1.3 SETS AND THEIR REPRESENTATION

A set is a collection of well-defined objects. By well-defined, it is
meant that given a particular collection of objects as a set and a particular
object, it must be possible to determine whether that particular object is a
member of the set or not.

The objects forming a set may be of any sort— they may or may not
have any common property. Let us consider the following collections :

i) the collection of the prime numbers lessthan 15i.e.,2, 3,5,7, 11, 13
ii) the collection of 0, a, Sachin Tendulkar, the river Brahmaputra
iii) the collection of the beautiful cities of India
iv) the collection of great mathematicians.

Clearly the objects in the collections (i) and (ii) are well-defined.
For example, 7 is a member of (i), but 20 is not a member of (i). Similarly,
‘a’ is a member of (ii), but M. S. Dhoni is not a member. So, the collections
(i) and (ii) are sets. But the collections (iii) and (iv) are not sets, since the
objects in these collections are not well-defined.

The objects forming a set are called elements or members of the

set. Sets are usually denoted by capital letters A, B, C, ...; X, Y, Z, ..., etc.,

Discrete Mathematics
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and the elements are denoted by small letters a, b, c, ...; X, V, z, ..., etc.
If ‘a’ is an element of a set A, then we write a € A which is read as ‘a
belongs to the set A’ or in short, ‘a belongs to A'. If ‘@’ is not an element of
A, we write a ¢ A and we read as ‘a does not belong to A'. For example, let
A be the set of prime number less than 15.
Then 2eA,3cA5cA7cA 1M1ecA 14cA
1e¢A 4¢A 17 ¢ A, etc.

Representation of Sets : Sets are represented in the following
two methods :

1. Roster or tabular method
2. Set-builder or Rule method

In the Roster method, the elements of a set are listed in any order,
separated by commas and are enclosed within braces, For example,

A={2,3,57,11,13}

B = {0, a, Sachin Tendulcar, the river Brahmaputra}

C={1,3,57,.1}

In the set C, the elements are all the odd natural numbers. We
cannot list all the elements and hence the dots have been used showing
that the list continues indefinitely.

In the Rule method, a variable x is used to represent the elements
of a set, where the elements satisfy a definite property, say P(x).
Symbolically, the set is denoted by {x : P(x)} or {x | p(x)}. For example,

A ={x: x is an odd natural number}

B={x:x2-—3x+2 =0}, etc.

If we write these two sets in the Roster method, we get,

A={1,3,5, .1}

B={1,2}

Some Standard Symbols for Sets and Numbers : The following
standard symbols are used to represent different sets of numbers :

N ={1,2,3,4,5, ..}, the set of natural numbers

Z ={.,-3,-2,-1,0,1, 2, 3, ..}, the set of integers

Q ={x:x= p/q; p, q € Z, q = 0}, the set of rational numbers

R ={x:xis areal number}, the set of real numbers

NOTE

1) It should be noted that
the symbol ‘.’ of {
stands for the phrase
‘such that’.

2) While writing a set in
Roster method, only
distinct elements are
listed. For example, if
A is the set of the
letters of the word
MATHEMATICS, then
we write
A={A,E,C,M, H,T,
S, 1}

The elements may be
listed in any order.

Discrete Mathematics
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Z*, Q*, R* respectively represent the sets of positive integers, positive
rational numbers and positive real numbers. Similarly Z-, Q-, R~ represent
respectively the sets of negative integers, negative rational numbers and
negative real numbers. Z° Q° R represent the sets of non-zero integers,
non-zero rational numbers and non-zero real numbers.

lllustrative Examples :

1. Examine which of the following collections are sets and which are
not :
i) the vowels of the English alphabet

ii) the divisors of 56

i) the brilliant students degree-course of Guwahati

iv) the renowned cricketers of Assam.

Solution :
i) Itisaset,V={a,e,io,u}

i) Itisaset,D={1,2,4,7,8, 14, 28, 56}

iii) not a set, elements are not well-defined.

iv) not a set, elements are not well-defined.

2. Write the following sets in Roster method :
i) the set of even natural numbers less than 10
i) the set of the roots of the equation x?>-5x+6 = 0
i) the set of the letters of the word EXAMINATION
Solution :

i) {2,4,6,8}

i) {2, 3}

i) {E,X,A,M,,N, T, O}
3. Write the following sets in Rule method :

i) E={2,4,6, ..}

i) A={2, 4,8, 16, 32}

i) B={1,8, 27, 64, 125, 216}
Solution :

i) E={x:x=2n,n¢e N}

i) A={x:x=2"neN,n<6}

i) B={x:x=n%neN,n<6)

10 Discrete Mathematics
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CHECK YOUR PROGRESS

Q.1. Express the following sets in Roster method :
i) A={x:xis aday of the week}
i) B ={x:xis amonth of the year}
i) C={x:x>-1=0}
iv) D ={x: xis a positive divisor of 100}
v) E ={x:xis a letter of the word ALGEBRA}
Q.2. Express the following sets in Set-builder method :
i) A= {January, March, May, July, August, October,
December}
i) B={0,3,8, 15,24, ..}
i) C={0, 45, £10, +15, ...}
iv) D={a,b,c, ...,x Yy 2z}
Q.3. Write true or false :
i) 5N i) Y2eZ i) —1e€Q
iv) J2eR v) J-1€R vi) -3 ¢N

1.4 THE EMPTY SET

Definition : A set which does not contain any element is called an

empty set or a null set or a void set. It is denoted by ¢.
The following sets are some examples of empty sets.
i) theset{x:x?=3andx € Q}
ii) the set of people in Assam who are older than 500 years
iii) the set of real roots of the equation x> +4 =0

iv) the set of Lady President of India born in Assam.

1.5 FINITE AND INFINITE SETS

Let us consider the sets
A={1,2,3,4,5}
and B={1,4,7,10,13, ...}

Discrete Mathematics
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NOTE
A finite set can always be
expressed in roster
method. But an infinite
set cannot be always
expressed in roster
method as the elements
may not follow a definite
pattern. For example,
the set of real numbers,
R cannot be expressed
in roster method.

If we count the members (all distinct) of these sets, then the counting

process comes to an end for the elements of set A, whereas for the elements

of B, the counting process does not come to an end. In the first case we

say that A is a finite set and in the second case, B is called an infinite set.

A has finite number of elements and number of elements in B are infinite.

Definition : A set containing finite number of distinct elements so

that the process of counting the elements comes to an end after a definite

stage is called a finite set; otherwise, a set is called an infinite set.

Example : State which of the following sets are finite and which

are infinite.

the set of natural numbers N
the set of male persons of Assam as on January 1, 2009.

the set of prime numbers less than 20

iv) the set of concentric circles in a plane
v) the set of rivers on the earth.
Solution :
i) N={1,2,3,..}is an infinite set
ii) itis a finite set
i) {2,3,5,7,11, 13,17, 19} is a finite set
iv) it is an infinite set
v) itis a finite set.
1.6 EQUAL SETS

Definition : Two sets A and B are said to be equal sets if every

element of Ais an element of B and every element of B is also an element

of A. In otherwords, A is equal to B, denoted by A = B if A and B have

exactly the same elements. If A and B are not equal, we write A = B.

Let us consider the sets

A={1,2}

B ={x: (x=1)(x-2) = 0}

C={x: (x=1)(x-2)(x-3) = 0}
ClearlyB={1,2},C={1,2,3}and hence A=B,A=C,B =C.

12
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Example : Find the equal and unequal sets :
i)y A={1,4,9}
i) B={12 22, 33
C ={x: x is a letter of the word TEAM}
D = {x: x is a letter of the word MEAT}
v) E={1,{4}, 9}
Solution: A=B,C=D,A=C,A=D,A=-E,B-C,B«D, B #E,
C-E,D#E

1.7 SUBSETS, SUPERSETS, PROPER SUBSETS

Let us consider the setsA={1, 2,3}, B={1, 2, 3,4} and C ={3, 2,
1}. Clearly, every element of A is an element of B, but A is not equal to B.
Again, every element of A is an element of C, and also Ais equal to C. In
both cases, we say that A is a subset of B and C. In particular, we say that
Ais a proper subset of B, but A is not a proper subset of C.

Definition : If every element of a set Ais also an element of another
set B, then Ais called a subset of B, or Ais said to be contained in B, and
is denoted by A < B. Equivalently, we say that B contains A or B is a
superset of A and is denoted by B o A. Symbolically, A ¢ B means that
for all x, if x € A then x € B.

If Ais a subset of B, but there exists atleast one element in B which
is not in A, then A is called a proper subset of B, denoted by A — B. In
otherwords, Ac B < (Ac B and A= B).

The symbol ‘<’ stands for ‘logically implies and is implied by’ (see
unit 5).

Some examples of proper subsets are as follows :

NcZ, NcQ,NcR,
ZcQ,ZcR,QcR.

It should be noted that any set A is a subset of itself, that is, A c A.
Also, the null set ¢ is a subset of every set, that is, ¢ < A for any set A.
Because, if § c A, then there must exist an element x € ¢ such that x ¢ A.

But x ¢ ¢, hence we must accept that ¢ — A.

NOTE
According to equality of
sets discussed above,
the sets
A={1,2,3}and
B={1,2,22 3,1, 3}
are equal, since every
member of Ais a
member of B and also
every member of B is a
member of A. This is why
identical elements are
taken once only while
writing a set in the
Roster method.

Discrete Mathematics
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Combining the definitions of equality of sets and that of subsets, we
getA=B< (AcBand B cA)
lllustrative Examples :

1. Write true or false :

) 1c{1,2 3}
iy {1,22c{1,2, 3}
i) o< {{o}}

iv) ¢ < {9, {1}, {a}}
v) {a, {b}, c,d} c{a, b, {c}, d}
Solution :
i) False, since 1 € {1, 2, 3}.
ii) True, since every element of {1, 2} is an element of {1, 2, 3}.
i) False, since ¢ is not an element of {{¢$}}.
iv) True, since ¢ is subset of every set.
v) False, since {b} ¢ {a, b, {c}, d} and ¢ ¢ {a, b, {c}, d}.

1.8 POWER SET

Let us consider a set A = {a, b}. A question automatically comes to
our mind— ‘What are the subsets of A?’ The subsets of A are ¢, {a}, {b} and
A itself.

These subsets, taken as elements, again form a set. Such a set is
called the power set of the given set A.

Definition : The set consisting of all the subsets of a given set A as
its elements, is called the power set of A and is denoted by P(A) or 2A.

Thus, P(A) or 24 ={X: X c A}

Clearly,

i) P(¢) = {0}
i) if A= {1}, then PA = {¢, {1}}
i) if A={1, 2}, then PA = {¢, {1}, {2}, A}
iv) ifA={1, 2, 3}, then PA={¢, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, A}
From these examples we can conclude that if a set Ahas n elements,

then P(A) has 2" elements.

14 Discrete Mathematics
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1.9 UNIVERSAL SET

A set is called a Universal Set or the Universal discourse if it
contains all the sets under consideration in a particular discussion. A
universal set is denoted by U.

Example :

i) Forthe sets {1, 2, 3}, {3, 7, 8}, {4, 5, 6, 9}

Wecantake U={1,2,3,4,5,6,7, 8, 9}

ii) In connection with the sets N, Z, Q we can take R as the universal
set.
ii) In connection with the population census in India, the set of all

people in India is the universal set, etc.

A
7 "\ /

CHECK YOUR PROGRESS

Q.4. Find the empty sets, finite and infinite sets :
i) the set of numbers divisible by zero
ii) the set of positive integers less than 15 and divisible by
17
i) the set of planets of the solar system
iv) the set of positive integers divisible by 4
v) the set of coplanar triangles
vi) the set of Olympians from Assam participating in 2016,
Rio Olympics.
Q.5. Examine the equality of the following sets :
i) A={2, 3}, B={x:x>-5x+6 =0}
i) A={x:xis a letter of the word WOLF}
B = {x : x is a letter of the word FLOW}
i) A={a, b, c},B={a,{b, c}}
Q.6. Write true or false :

i) {1,3,5c{5,1,3} i) {a} c{{a}, b}

i) {x:(x=1)(x=2) = 0} & {x : (x*-3x+2)(x=3) = 0}

Discrete Mathematics
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Q.7. Write down the power sets of the following sets :
i) A={1,2,3,4} i) B={1,{2, 3}}
Q.8. Give examples to show that AcBandB cC)=>AcC.

1.10 VENN DIAGRAM

Simple plane geometrical areas are used to represent relationships
between sets in meaningful and illustrative ways. These diagrams are called
Venn-Euler diagrams, or simply the Venn-diagrams.

In Venn diagrams, the universal set U is generally represented by
a set of points in a rectangular area and the subsets are represented by
circular regions within the rectangle, or by any closed curve within the
rectangle. As an illustration Venn diagrams of A< U, A< B < U are given

below :

Similar Venn diagrams will be used in subsequent discussions

illustrating different algebraic operations on sets.

1.11 SET OPERATIONS

We know that given a pair of numbers x and y, we can get new
numbers X + Yy, X — Yy, Xy, X/y (with y = 0) under the operations of addition,
subtraction, multiplication and division. Similarly, given the two sets A and
B we can form new sets under set operations of union, intersection,
difference and complements. We will now define these set operations,

andthe new sets thus obtained will be shown with the help of Venn diagrams.

1.11.1Union of Sets

Definition : The union of two sets A and B is the set of all

elements which are members of set A or set B or both. It is denoted

16
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by AU B, read as ‘A union B’ where ‘U’ is the symbol for the operation
of ‘union’. Symbolically we can describe A U B as follows :
AuB={x:xeAorxe B}

A U B (Shaded)
It is obviousthat AcAuUB,BcAUB
Example 1: LetA={1,2,3,4},B={2,4,5, 6}
ThenAuB={1, 2, 3, 4,5, 6}
Example 2 : Let Q be the set of all rational numbers and K be the
set of all irrational numbers and R be the set of all real numbers.
ThenQuU K=R
Identities : If A, B, C be any three sets, then
i) AuB=BUA
i) AUA=A
i) Aud=A
iv) AuU=U
v) AuB)uC=AuBuUC)
Proof :
i) AuB ={x:xeAorxeB}
={x:xeBorxeA}
=BUA
i) AUA ={x:xeAorxeAl={x:xeA}=A
i) Aud ={x:xeAorxe¢d}={x:xeA}=A
iv) AuU ={x:xeAorxe U}
={x:x e U}, sinceAc U
=U
v) (AuB)uC={x:xeAuBorxeC}
={x:(xeAorx eB)orx e C}
={x:xeAor(xeBorxeC}
={x:xeAorxeBuC}
=Au (B uC)

Discrete Mathematics 17




Unit 1

Sets

1.11.2 Intersection of Sets

Definition : The intersection of two sets A and B is the set of all

elements which are members of both A and B. It is denoted by A n

B, read as ’A intersections B’, where ‘~’ is the symbol for the

operation of ‘intersection’. Symbolically we can describe it as follows:
AnB={:xeAandx e B}

U

A n B (Shaded)
From definition it is clear that if A and B have no common
element, then A n B = ¢. In this case, the two sets A and B are

called disjoint sets.

U P

AnB=¢
It is obvious that An B cA,An B cB.
Example 1: LetA={a, b, c,d}, B={b,d, 4, 5}
ThenAn B ={b, d}
Example 2: LetA={1,2,3},B={4,5, 6}
ThenAn B =¢.
Identities :
i) AnB=BnA
i) AnA=A
i) And=4¢
iv) AnU=A
v) AnB)nC=An(BnC)
vi) AnBuC)=(AnB)uU (AnC),
AuBnNnC)=(AuB)n(AuUC)

18
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Proof :

i) AnB ={x:xeAandx e B}
={x:x e Band x € A}
=BnA

i) AnA ={x:xeAandx e A}
={x:x e A}
=A

iii) Since ¢ has no element, so A and ¢ have no common element.

HenceAnd=1¢
iv) AnU ={x:xeAandx e U}
={x:x € A}, sinceAc U
=A
v) AnB)nC={x:xeAnBandx e C}
={x:(x e Aand x e B)and x € C}
={x:xeAand (x e Bandx € C}
={x:xeAandx e Bn C}
=An(BnCQC)
vii xeAn(BuC)<xeAandx e (BuC)
< xeAand(x e Borx e C)
< (xeAandxeB)or(xe Aand x € C)
oxe(AnB)orxe (AnC)
oxe(AnB)u(AnC)
So,An(BuUC)c(AnB)U(AnC)
and AnB)U(ANC)cAn (BuUC).
Hence, AnN(BuUC)=(AnB)uU (AN C).

Similarly, it can be proved thatAu (BN C)=(AuB)n (AU C).

NOTE
xeAnB
=>xeAandxeB
But, x 2 AnB
=>x¢gAorxg¢B
Again,x e AuB
=>xeAorxeB
But, xg AuB
=>xg¢Aandx¢B

1.11.3 Difference of Sets

Definition : The difference of two sets A and B is the set of

all elements which are members of A, but not of B. It is denoted by

A-B. Symbolicallyy, A-B={x:xeAandx ¢ B}
Similarly, B-A={x:xeBandxgA}

Discrete Mathematics
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A — B (Shaded) B — A (Shaded)
Example :LetA={1,2,3,4,5},B={1,4,5},C={6,7, 8}
Then A-B={2,3}
A-C=A
B-C=B
B-A=¢
Properties :
i)y A-A=¢
i) A-BcA B-AcB
i) A—B,An B, B-A are mutually disjoint and
(A-B)U(AnB)u(B-A)=AUB
iv) A—-BuC)=(A-B)n(A-C)
v) A-BnC)=(A-B)uU (A-C)
Proof : We prove (iv), others are left as exercises.
xeA-(BuC) @oxeAandx ¢ (BuC)
<xeAand(x ¢ Bandx ¢ C)
< (XxeAandx ¢ B)and (x e Aand x ¢ C)
< xe(A-B)andx e (A-C)
<xe(A-B)n(A-C)
So,A-BuC)c(A-B)n(A-C),(A-B)n(A-C)cA-(BuUC)
Hence, A-(BuC)=(A-B)n (A-C).

1.11.4 Complement of a Set

Definition : If U be the universal set of a set A, then the set of all
those elements in U which are not members of A is called the
Compliment of A, denoted by A® or A'.

Symbolically, A’ = {x : x € U and x ¢ A}.

20 Discrete Mathematics
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ol Ll

A’ (Shaded)
Clearly, A’ =U - A.
Example: LetU={1,2,3,4,5,6,7,8,9tandA={2, 4,6, 8}

Then A’ = {1, 3, 5, 7, 9}

Identities :i) U’ =¢, ¢' = U el

i) (A =A NOTE

o o The identities

i) AVA'=U, ANnA =¢ (AUB) = A B and

iv) A~B=ANB,B-A=B A (A B) =AU B are

v) AuB)=A"nB,(AnB)Y=A"uUB’ know as DeMorgan’s
Proof : We prove (AU BY = A’ ~ B'. The rest are left as exercises. |-aWs:

(AuB) ={x:xeUandx ¢ Au B}
={x:xeUand(x ¢ Aand x ¢ B}
={x:(xeUandx ¢ A)and (x € U and x ¢ B)}
={x:xe A and x € B’}
=A'nB.

lllustrative Examples :
1. If U={1,2,3,4,5,6,7,8,9, 10}
A={24,6,8, 10}
B ={3, 6, 9}
and C={1, 2, 3, 4, 5}, then find
(VAU B, (i) AnC, (i) BnC, (iv)A’, (v Au B, (viiC'n B,
(vii) A" U C, (vii)A=C, (x) A-(BuUC), (x) A" nB'".
Solution: i) AuB=(2,3,4,6,8,9, 10}
i) AnC={2,4}
i) BN C={3}
iv) A’={1,3,5,7,9}
v) B'={1,2,4,5,7,8, 10}
So,AuB' ={1,24,5,6,7,8, 10}
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vi) C'={6,7,8,9, 10}
So, C'nB = {6, 9}
vii) From (iv) & (vi), A’uC'={1,3,5,6,7,8,9, 10}
vii) A—-C = {6, 8, 10}
ix) BuC={1,2,3,4,5,6,9}
(BuC)y ={7,8, 10}
So,A-(BuC) ={2,4,6}
x) From (iv) & (v), A nB' ={1,5, 7}.
2. Verify the identities :
i) AuBnC)=(AuB)n(AuC)
i) AuB)Y=A"NnB’
taking A={1,2,3},B={2, 3,4}, C={3, 4, 5} and
u={1,2,3,4,5,6}.
Solution: i) BN C ={3, 4}

AU(BANC)={1,2,3,4 ... (1)
AUB={1,23,4,AuC={1,2 3, 4,5)
(AUB)N(AUC)={1,2,3,4 ... (2)

From (1) & (2), we get
AuBnNnC)=(AuB)n(AuC).

i)y A'={4,5,6},B" ={1,5, 6}
AnB={,68 .. (3)
(AuB)={1,2,3,4y={(56} ... 4)
From (3) & (4), wet get
(AuB)y=A"nB.

A\

<

CHECKYOUR PROGRESS

Q.9. Find the following sets :
) ¢ {0} i) {6} ~ {0}
iii) {0, {0}} — {0} iv) {9, {o}} — {{o}}
Q.10. IfA={a,b,c},B={c,d,e},U={a, b,c,d,e,f}then find
i) AuUB i) AnB i) A-B iv) B-A v) A
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fA={x:xe R, 1<x<7},B={x:xeR,3<x<12}

Q1. IfA={8n:neN},B={n:neN,n<20}
then find AN B, B —A.
Q.12.
then find AUB,AnB,A-B,B-A.
Q.13. Using numerical examples, verify that :
i) A-B=B' -A
i) (A-B)u(B-A)=(AuB)-(AnC)
i) A~-BnC)=(A-B)U(A-C)
Q.14. Provethat:i)B-AcCA’

i) AUB=¢=A=¢andB = ¢.

i) B-A"=BnA

1.12 LAWS OF THE ALGEBRA OF SETS

identities under the operations of union, intersection and complement of
sets. These identities are considered as Laws of Algebra of Sets. These
laws can be directly used to prove different propositions on Set Theory.
These laws are given below :
1.
2.
3.

In the preceding discussions we have stated and proved various

Idempotent laws :

Commutative laws :

Associative laws :

Distributive laws :

Identity laws :

Complement laws :

De Morgan’s laws :

Let us illustrate the application of the laws in the following examples :

AUA=A/AnA=A
AuB=BUA AnB=BnA
AuBuC)=(AuB)uUC,
An(BnC)=(AnB)nC
AuBNC)=(AuB)n(AnC),
AnBuC)=(AnB)U(ANnC)
Aud=AAulU=U
ANnU=AAnd=¢

AUA =UANA =
AYy=AU=¢,¢=U
(AuB)Y=A"nB’
(AnB)Y=A"UB.

Example 1 : Prove thatAn (AU B)=A

Discrete Mathematics
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Solution: An (AUB) =(AuU ) (Au B), using identity law
= A U (¢ n B), using distributive law
=Au (B n ¢), using commutative law
= A U ¢, using identity law
= A, again using identity law
Example 2 : Prove thatAn (A" UB)=ANnB
Solution : An (A’ U B) = (AN A’) U (AN B), using distributive law
= ¢ U (A n B), using complement law
= (A n B) U ¢, using commutative law

= A n B, using identity law

1.13 TOTAL NUMBER OF ELEMENTS IN UNION OF
SETS IN TERMS OF ELEMENTS IN INDIVIDUAL
SETS AND THEIR INTERSECTIONS

We shall now prove a theorem on the total number of elements in
the union of two sets in terms of the number of elements of the two individual
sets and the number of elements in their intersection. Its application in
solving some practical problems concerning everyday life will be shown in
the illustrative examples.

Theorem : If A and B are any two finite sets,

then |[A U B| = |A| + |B| - |A N B|

[The symbol |S| represents total number of elements in a set S]

Proof: Let |A|=n, [B|=m, |JAnB| =k

Then from the Venn diagram,

weget|A-B|=n-k,|B-Al=m-k

We know that AuUB =(A-B)U(AnB)uU (B-A)

Where A - B, A n B, B — A are mutually disjoint.

Hence AUB|=|A-B|+|AnB|+|B-A|
(n—k)+k+ (m-Kk)

n+m-k
|A] +B| - |A "~ B|

24
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Deduction :
IJAUBUC|=|A|+|B|+|C|-|ANnB|-|IBNC|-|ANnC|+|AnBNC|
Proof :  AUBUC|=|(AuB)uUC]|
=|AuUB|+|C|-|(AuB)nC|
=|Al+|B[-|ANB[+|C|-|(AnC)u (BN C)|
= |A[+[B[ +|C| - |AnB| -
IANC|+BNC|-|(AnC)n (BN C)|]
=|A[+ B[ +|C|-|AnB[-|BNC|-|ANC|+
|JAnBNC|
Corollaries :
If Aand B are disjoint, then An B = ¢ and so |An B| = 0.
Hence |A U B| = |A] + |B|,
which is known as the Sum Rule of Counting.
If A, B and C are mutually disjoint, then as above
|JAuBuUC|=|A]+|B| +|C|.

lllustrative Examples :

In a class of 80 students, everybody can speak either English or
Assamese or both. If 39 can speak English, 62 can speak
Assamese, how many can speak both the languages?

Solution : Let A, B be the sets of students speaking English and

Assamese respectively.

Then |[A U B| = 80, |A| = 39, |B| = 62.

We are to find |A n B.

Now |A U B| =|A| + |B] - |A n B|

So, |AnB|=|Al+|B|]-|AuUB|=39+62-80=21.

Hence, 21 students can speak both the languages.

. Among 60 students in a class, 28 got class | in SEM | and 31 got

class | in SEM II. If 20 students did not get class | in either
SEMESTERS, how many students got class | in both the
SEMESTERS?

Solution : Let A and B be the sets of students who got class | in

SEM | and SEM Il respectively.
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So, |A| =28, |B| = 31.
20 students did not get class | in either SEMESTERS out of 60
students in the class.

Hence |A U B| =60 —-20 =40

But [A U B| =|A| +|B| - |A N B|

ie.,40=28+31-]AnB| So,|JAnB|=19

Therefore, 19 students did not get class | is both the SEMESTERS.
3. Outof 200 students, 70 play cricket, 60 play football, 25 play hockey,

30 play both cricket and football, 22 play both cricket and hockey,

17 play both football and hockey and 12 play all the three games.

How many students do not play any one of the three games?

Solution : Let C, F, H be the sets of students playing cricket, football

and hockey respectively. Then

|C| =70, |[F| = 60, |H| = 25,

ICNF|=30,|CnH| =22, |FH|=17,|CnF nH|=12.

So, |CUF UH| =|C|+|F|+|H|-|ICnF|=|CnH|-|FH|+

ICNFnH
=70+60+25-30-22-17+12=98

Thus 98 students play atleast one of the three games.

Hence, number of students not playing any one of the three games

=200 - 98 = 102.

EXERCISES

)

1. Write ‘true’ or ‘false’ with proper justification :
i) the set of even prime numbers is an empty set
i) {x:x+2=5,x<0}is an empty set
i) {3yc{1, 2, 3}
iv) x e {{x y}
v) {a, b}c{a, b, {c}}
vi) ifAbe any set,then ¢ cAc U
2. Which of the following sets are equal?
A ={x:x*+x-2=0}

2
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={x:x>-3x+2=0}
={x:xeZ |x|=1}
={-2,1}

={1.2}
={x:x2-1=0}

3. Find the sets which are finite and which are infinite :

m m O O @

i) the set of natural numbers which are multiple of 7
ii) the set of all districts of Assam
iii) the set of real numbers between 0 and 1
iv) the set of lions in the world.

4. fU={0,1,2,3,4,5,6,7,8,9},A={0, 2, 3,6}, B={1, 2,6, 8},
C={3,7,8,9} thenfindA’, B, C,(AuB)nC, (AuB)uUC,
(AnB)nC,(A-C)uB,(B-AYnC.

5. IfAuB =B andAnn B =B, then what is the relation between A

and B?
6. Verify the following identities with numerical examples :
i) A—-B=B"-A’

i) A-B)u(B-A)=(AuB)-(AnB)
i) A-BnC)=(A-B)u(A-C)
iv) A—-BuC)=(A-B)n(A-C).
7. Write down the power set of the set A = {{¢}, a, {b, c}}.
8. Given A= {{a, b}, {c}, {d, e, f}}, how many elements are there in
P(A)?
9. Using numerical examples, show that
i) AnB)U(A-B)=A
i) AuB=Au((B-A)
i) AuB=BuU(A-B)
iv) B-ACA
v) B-A"=BnA
10. Using Venn diagrams show that
i) AUBcAuChbutBg¢C
i) AnBcAnCbutBegC
i) AuB=AuCbutB=C.
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11

14.

15.

. Give numerical examples for the results given in 10.
12.
13.

Show that (A-B)-C=(A-C)-(B-C).

Out of 100 persons, 45 drink tea and 35 drink coffee. If 10
persons drink both, how many drink neither tea nor coffee?
Using sets, find the total number of integers from 1 to 300 which
are not divisible by 3, 5 and 7.

90 students in a class appeared in tests for Physics, Chemistry
and Mathematics. If 55 passed in Physics, 45 passed in
Chemistry, 60 passed in Mathematics, 40 both in Physics and
Chemistry, 30 both in Chemistry and Mathematics, 35 both in
Physics and Mathematics and 20 passed in all the three subjects,

then find the number of students failing in all the three subjects.

T

__L! 1.14 LET US SUM UP

A setis a collection of well-defined and distinct objects. The objects
are called members or elements of the set.

Sets are represented by capital letters and elements by small letters.
If 'a’ is an element of set A, we write a € A, otherwise a ¢ A.

Sets are represented by (i) Roster or Tabular method and (ii) Rule
or Set-builder method.

A set having no element is called empty set or null set or void set,
denoted by ¢.

A set having a finite number of elements is called a finite set,
otherwise it is called an infinite set.

Two sets Aand B are equal, i.e. A= B if and only if every element of
A is an element of B and also every element of B is an element of
A, otherwise A = B.

A is a subset of B, denoted by A — B if every element of A is an
element of B and A is a proper subset of Bif Ac BandA=B. In
this case, we write A c B.

A=Bifandonly if Ac B and B c A.

28
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The set of all the subsets 8 a set A is called the power set of A,
denoted by P(A) or 22, If |A| = n, then |P(A)| = 2".

Venn diagrams are plane geometrical diagrams used for
representing relationships between sets.

The union of two sets Aand B is AU B which consists of all elements
which are either in Aor B orin both. AUB ={x:x e Aorx € B}
The intersection of two sets A and B is A n B which consists of all
the elements common to both A and B.

For any two sets A and B, the difference set, A — B consists of all
elements which are in A, butnotin B.A-B ={x:x e Aand x ¢ B}
The Universal set U is that set which contains all the sets under
any particular discussion as its subsets.

The complement of a set A, denoted by Ac or A’ is that set which
consists of all those elements in U which are not in A.
A={x:xeUandx ¢ A}=U-A

Following are the Laws of Algebra of Sets :

AUA=A/ANnA=A

AuB=BUA AnB=BnA
AuBuC)=(AuB)UC,ANnBNC)=(AnB)nC
AuBNC)=(AuB) Nn(AUC),An(BuUC)=(AnB)U(ANC)
Avd=A/AvU=UANU=AANI=0

AUA =UANA =¢,(A)Y=AU=¢,¢'=U

(AuBY=A"nB, (AnB)Y=A"UB.

|AwB|=I|Al+|B|-|ANB]
IJAUBUC|=|Al+|B|+|C|-|[AnB|-]ANnC|-|IBNC|+|AnBNC|

A(‘ 1.15 ANSWERS TO CHECK YOUR PROGRESS

Ans.to Q. No.1: i) A = {Monday, Tuesday, Wednessday, Thursday,

Friday, Saturday, Sunday}
i) B={January, February, March, April, May, June, July, August,
September, October, November, December}
i) C={1,w, w?}
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Ans.

Ans.
Ans.
Ans.

Ans.

Ans.

Ans.
Ans.

Ans.

Ans.

Ans.

Ans.

to Q.

to Q.
to Q.
to Q.

to Q.

to Q.
to Q.
to Q.

to Q.

to Q.

to Q.

iv)

v)

No.

i)

No.
No.
No.

D={1,2,4,5,10, 20, 25, 50, 100}
E={A B,E GL, R}

2:

i) A={x:xisamonth of the year having 31 days}

B={x:x=n?2-1,ne N}
i) C={x:x=5n,n¢elZ}
iv) D ={x: xis a letter of the English Alphabet}

3:
4
5:

i) True, ii) False, iii) True, iv) True, v) False, vi) True.
i) ¢, ii) ¢, iii) finite, iv) infinite, v) infinite, vi) ¢.
i)B={2,3}=A

i) A={W,0,L,F}, B={F L,O,W}andso,A=B
i) A=B;sincebeAbutb ¢ B.
to Q. No. 6 :

i)

i) True

False, since {a} € {{a}, b}

i) {x:(x=1)(x=2)=0}={1, 2}, {x: (x>-3x+2)(x-3)=0}={1, 2, 3}
Hence {x : (x-1)(x=2) = 0 < {x : (x>-3x+2)(x—3) = 0} and

so, the given result is false.

No.

i)

No.
No.
No.

No.

No.

No.

7:

i) P(A)= {0, {1} {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4},
{2,3},{2,4}, {3, 4}, {1,2,3}4{1, 2,4},
{1,3,4},{2, 3,4}, A}

P(B) = {¢, {1}, {{2, 3}}, B}

8:
9:

10 :

11 :

12 :

13:

LetA={1,2},B={0,1,2,3},C={0,1,2,3,4,5,7}
i) ¢, i) {o}, iii) {¢3}, iv) {¢}

i)AnB={a, b, c,d,e}; ii){C}; iii)A—B = {a, b},
iv)B—A={d, e}; vV)A’'={d, e, f}

A={3,6,9, 12, 15,18, 21, ...},

B={1,2,3, .., 18,19, 20},

Hence AnB ={3,6,9, 12, 15, 18}
andB-A={1,2,4,5,7,8,10, 11, 13, 14, 16, 17, 19}
AuB={x:1<x<12,x € R}
ANnB={x:xeR,3<x<7}
A-B={x:xeR,1<x<3}
B-A={x:xeR,7<x<12}

Take U={p,q,r, s, t,u,v,w, XYy, z}

30
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A={p.q,u,Vv,x, y}
B={q,v,y,ztandC={p, s, t, v, X, y}

i) A—-B={p,ux}, A={rs,t,w,z}, B={p,r,s,t u x}
B'-A’"={p, u, x} and hence, A-B=B" - A’

i) B-A={z}andso,(A-B)u (B-A)={p,u,x, z}
Again,AuB={p,q,u,v,x,y,zandAnB={q, v, y}
So,(AuB)-(AnB)={p, u, x, z}

Thus, (A-B)u (B-A)=(AuB)-(AnB)

i) A—C={qg,u}andso, (A—B)u(A-C)={p,q, u, x}
BnC={v,y}andso,A-(BnC)={p, q, u, x}
ThusA—-(BnC)=(A-B)uU (A-C).

Ans.toQ.No.14: i) xe B-A =xeBandx¢gA =xeUandxg¢A
=XxechA,

where x is an arbitrary element of (B —A). Hence B—AcA’

i) xeB-A"oxeBandxgA’
<xeBandxeA ©xeBnA

Hence B—-A'cBnAandBAcB-A’

Thus,B-A'=BnA

i) AcAuB=Ac¢d,asAuB=¢ ... (1)
Alsodc<cA L. (2)
From (1) & (2), we get A = ¢. Similarly, B = ¢.

1.16 FURTHER READINGS

1) Discrete Mathematics — Semyour Lipschutz & Marc Lipson.
2) Discrete Mathematical Structures with Applications to Computer

Scinece — J. P. Tremblay & R. Manohar.

1.17 MODEL QUESTIONS

Q.1. Give examples of i) five null sets
ii) five finite sets

i) five infinite sets
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Q.2.

Q.3.

Q.4.

Q.5.

Q.6.

Q.7.
Q.8.

Q.9.

Write down the following sets in rule method :
i) A= 1,1,1,1,...
234

11 1 1
iy B= {E’E’ﬂ’ﬁ’}
i) C={2,5,10, 17, 26, 37, 50}
Write down the following sets in roster method
i) A={x:xeN,2<x<10}
i) B={x:xeN,4+x< 15}
i) C={x:xeZ -5<x<5}
IfA={1,3}, B={1,3,5,9}, C={2,4,6,8}and
D ={1, 3, 5, 7, 9} then fill up the dots by the symbol < or ¢ :
i)A...B, ii)A...C, ii)C..D, iv)B...D
Write true or false :
) 4e{1,2,{3, 4} 5} (i) ¢ ={¢}
i) A={2, 3}is a proper subset of B = {x : (x—1)(x—2)(x-3) = 0}
iv) AcB,BcC=AcC
If U={x:xeN}, A={x:xe N,xiseven}, B={x:x e N, x<10}
C ={x:x e N, xis divisible by 3}, then find
NAUB, ii)AnC, iii)BnC, iv)A', (v)B’, vi)C'.
IfAuB=BandBuC=C, then show that A < C.
IfU={-5,-4,-3,-2,-1,0,1, 2, 3, 4, 5},
A={-5-2,1,2,4}
B={-2-3,0,24,5}
C={1,0,2,3,4,5}
then find i) AU B, i) AN C, ii)An(BuC),iv)BnC/,
V)A'U (BN C'), vi)A-C', vii)A— (B v C), viii)) (B U C),
ix) A”u C', x)(C'uB)-A.
Prove the following :
i) IfA, B, C are three sets such that A c B,
thenAuCcBUC,AnNnCcBANC.
i) AcBifandonlyifB cA'

32
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Q.10.

Q.11.

Q.12.

Q.13.

Q.14.

i) AcBifandonlyifAnB=A.

iv) fAnB=¢,thenAcB'.

How many elements are there in P(A) if A has

i) 5 elements, ii) 2" elements?

Every resident in Guwahati can speak Assamese or English or
both. If 80% can speak Assamese and 30% can speak both the
language, what percent of residents can speak English?

76% of the students of a college drink tea and 63% drink coffee.
Show that a minimum of 39% and a minimum of 63% drink both
tea and coffee.

In a survey of 100 students it is found that 40 read Readers’
Digest, 32 read India Today, 26 read the Outlook, 10 read both
Readers’ Digest and India Today, 6 read India Today and the
Outlook, 7 read Readers’ Digest and the Outlook and 5 read all
the three. How many read none of the magazines?

In an examination 60% students passed in Mathematics, 50%
passed in Physics, 40% passed in Computer Science, 20%
passed in both Mathematics and Physics, 40% passed in both
Physics and Computer Science, 30% passed in both Mathematics
and Computer Science and 10% passed in all the three subjects.

What percent failed in all the three subjects?
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UNIT STRUCTURE

2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8

Learning Objectives

Introduction

Cartesian Products

Relations

2.4.1 Relation Between Two Sets

2.4.2 Relation on a Set

2.4.3 Domain and Range of a Relation
2.4.4 Total Number of Distinct Relations
2.4.5 Some Set Operations on Relations
2.4.6 Types of Relations in a Set

2.4.7 Properties of Relations in a Set

2.4.8 Equivalence Relations

2.4.9 Equivalence Classes or Equivalence Sets
2.4.10 Partitions

2.4.11 Relation Induced by Partition of a Set
2.4.12 Quotient Set

2.4.13 Partial Order Relation

Let Us Sum Up

Answers to Check Your Progress

Further Readings

Model Questions

2.1

LEARNING OBJECTIVES

After going through this unit, you will be able to
® know about the concepts of relation in a set
® |earn about the types of relations in a set

® describe properties of relations in a set
[ J

describe partitions set.
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2.2 INTRODUCTION

In many problems concerning discrete objects, we find that there
exists some kind of relationships among the objects. For example, there is
arelationship between the employee and his salary, students and teachers,
computer programs if they have some common data etc. ‘Relation’ has got
tremendous application in every sphere of fields — social, economic,
engineering, technological, etc. In computer science, the concept of relation
is a major tool to understand it clearly. In this unit, we will introduce you to

the concept of relation and some of its properties.

2.3 CARTESIAN PRODUCTS

Let A and B be two sets. The cartesian products of A and B,

denoted by A x B, is the set of all ordered pairs of the form (a, b) where

acA and beB.

Example: Let A= {a, b} and B = {a, c, d}.

NOTE
Then Ax B ={(a, a), (a, c), (a, d), (b, a), (b, c), (b, d)} The sets AxB and BxA
Similarly, if A={1, 2, 3,4)and B = {2, 7} are not equal, unless A =

then, Ax B ={(1,2), (1,7), 2, 2), (2. 7), (3, 2), (3, 7), (4, 2), (4, 7)} |B- It setAhas nele-

ments and B has m
Also, BxA={(2,1),(2,2,),(2,3),(2,4), (7,1), (7, 2), (7, 3), (7, 4)} clements. then their

product AxB has nm
elements.

2.4 RELATIONS

We are familiar with human relations such as ‘is brother of’, ‘is
sister of’, ‘is son of’ etc. We are also familiar with relations existing between
arithmetical, geometrical or algebraic quantities such as ‘2 is less than 5,
‘AABC is similar to APQR’, ‘(x+1) divides (x*>-1)’, etc. These examples show
that two quantities taken in a definite order gives us a relation.

Let us consider the set A={1,2,3}and B = {4, 5, 6}

We have Ax B ={(1, 4), (1, 5), (1, 6), (2, 4), (2, 6), (3, 6)}

Consider the subset R of A x B given by

R ={(1,4),(1,5), (1,6), (2, 4), (2,6), (3, 6)}

={(x, y) : xeA, yeB and x divides y}
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The subset R of A x B establishes a relation from set A to set B.
We now generalise this concept of relation between two sets in the

following subsection.

2.4.1 Relation in a Set

Let A and B be any two sets. A binary relation or, simply a
relation from A to B is defined to be a subset of A x B. Generally, a
relation is denoted by R. Thus, if R be a relation from A to B, then

RcAx B

R={(x,y):xeA,yeB}

Fora e A,b € Bif (a, b) € R, we say that ‘a is related to b
under the relarion R’ or, ‘a is R-related to b’, written as aRb.

If (a, b) ¢ R, we say that ‘a is not R-related to b’ and we write
as aRkb.

Example : LetA={x,y,z},and B ={a, b, c}
and R ={(x, b), (x, ¢), (v, @), (z, c)}

Clearly R < A x B and hence R is a relation from A to B,

where xRb, xRc, yRa, zRc.

As (x,a) ¢ R,sox € a. Similarly,y € b, z € b, etc.

2.4.2 Relation on a Set

Let A be a given set. If R be a relation from Ato A, i.e. R ¢
A x A, then R is called a (binary) relation on A.
Example : LetA={2,3,4,5,6,7,8,9}.

Then R = {(2, 4), (2, 6), (2, 8), (3, 6), (3,9), (4, 8)} is a

relation on A. We can write R ={(x, y) : x, y ¢ Aand x divides y}

2.4.3 Domain and Range of a Relation

The Domain D, denoted by Dom(R), of a relation R is defined
as the set of all first elements of the ordered pairs which belong to
R.ie. D={xeA:(x,y) e R, fory € B}
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The Range E, denoted also by Ran(R), of the relation R is
defined as the set of all second elements of the ordered pairs which
belong to R, i.e.

E={yeB:(x,y) € R, for some x € A}

Obviously, D c Aand E c B.

Example: LetA={1,2,3,4}and B ={a, b, c}. Every subset of Ax B
is a relation from Ato B. So, if R={(2, a), (4, a), (4, c)} then domain
of R is the set {2, 4} and the range of R is the set {a, c}.

Example : Let A= (2, 3,4} and B = {3, 4, 5}. Arelation R is defined
as aRb if and only if a<b.

Then R ={(2, 3), (2, 4), (2, 5), (3, 4), (3, B), (4, 5)}.

Dom(R) = {2, 3, 4} and Ran(R) = {3, 4, 5}.

Example: Let A= (2, 3, 5} and B = {3, 4, 5}. Arelation R is defined
as aRb if and only if a and b are both odd numbers.

Then, R ={(3, 3), (3, 5)}.

Dom(R) = {3} and Ran(R) = {3, 5}.

2.4.4 Total Number of Distinct Relations

Let the number of elements of the set Aand B be mand n
respectively. Then the number of elements of Ax B is mn. Therefore,
the number of elements of the power set of Ax Ais 2™. Thus, AxB
has 2m" different subsets. Now, every subset of A x B is a relation

from A to B. Hence, the number of different relationA to B is 2™".

2.4.5 Some Operations on Relations

Let R and S be two relations from set A to set B.
ThenRcAxB,ScAxB.

Clearly RUS cAxB,RN"S cAxB,R-ScAxB,R cAxB.
These are again relation from A to B, where

R' ={(a,b)e AxB:(a,b) ¢ R}

RuUS ={(a,b):(a,b)e Ror(a,b) e S}
RNS={(a,b):(a,b)e Ror(a,b) e S}
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R-S ={(a,b):(a,b) e Ror(a,b) ¢ S}
Alternatively,
a(R)b < aRb
a(RuS)b< aRb or aSb
a(RNS)b< aRb and aSb
a(R-S)b < aRb and a%b
Example :Let A={1,2,3,4},B={ab,c},
R={(1,a), (1,b), (2,c), (3, a), (3, b)}
and S={(1,b), (2, a), (3, a), (4, b)}
then R/ ={(1,¢c), (2,a), (2,b), (3,c), (4, a), (4, b), (4, c)}
RUS ={(1,a),(1,b), (2, a), (2,c), (3, a), (3,b), (4, b)}
RNS ={(1, b), (3, a)}
R-S ={(1,a), (2, c), (3, b)}

—

N\

221

A\

CHECK YOUR PROGRESS

Q.1. Let P = {North, South, West} and Q = {House, Garden}.
Find (i) PxQ (i)QxP (ii)PxP

Q.2. IfasetS hasn elements, how many relations are there from
S to S?

Q.3. Given A=1{2, 3}, B ={3, 4, 5} be two sets and
R ={(2, 3), (2, 4), (3, 5)} be a relation. Find
(i) Domain(R) (ii) Range(R) (iii) Dom(R™") (iv) Ran(R™")

2.4.6 Types of Relations in a Set

% Here, we shall consider some special types of relations in a

set.
NOTE Inverse Relation : Let R be a relation from the set A to the set B.
Every relation has an The inverse of R, denoted by R is the relation from the set B to A

inverse relation. If R be a
relation from the set A to
B, then (R")"' = R.
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That is, the inverse relation R consists of those ordered
pairs which when reversed, belong to R. Thus, every relation R from
the set A to the set B has an inverse relation R~ from B to A.

i.,e. xRy = y R™'x
Example: LetA={a, b, ¢}, B ={x, y} and

R ={(a, x), (a, y), (b, x), (c ,y)} be a relation from A to B.

The inverse of Ris R = {(x, a), (y, a), (x, b), (y, ¢)}
Example: LetA={2, 3,4} and R={(x, y) : [x—y| = 1} be a relation
in A. Thatis, R = {(2, 3), (3, 2), (3, 4), (4, 3)}.

The inverse relation is R = {(3, 2), (2, 3), (4, 3), (3, 4)}
Theorem 1: If R be a relation from set A to B, then the domain of
R is the range of R™" and the range of R is the domain of R".
Proof: Let y € domain of R™'. Then y € B and there exists x € A
such that (y, x) e R™.

Now (y,x) e R'= (x,y) e R

=Yy € Range of R

Thus, domain of R™' = y € range of R.

Therefore, domain of R™' < range of R.

Similarly, we can prove that range of R < domain of R".

Therefore, domain of R™' = range of R.

In a similar manner it can be proved that the domain of R is
equal to the range of R".

Identity Relation : A relation R in a set A is said to be identity
relation, denoted by |, if |, = {(x, X) | x € A}

Example: LetA={1,2,3}then |, ={(1, 1), (2, 2), (3, 3)} is an identity
relation in A.

Universal Relation : A relation R in a set Ais said to be universal
relation if R is equal to A x A.

Example: Let A = {a, b, c} then

R=AxA={(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}
is a universal relation in A.

Void Relation : Arelation Rin a set A is said to be void relation if

Risanull seti.e. R =®.
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Every subset of Ax Ais a relation in A. Since @ is also a sub
set of A X A, therefore, the null set @ is also a relation in A.
Example: Let A = {2, 3, 5} and relation R be defined as aRb if and

only if ‘a divides b’, then R = ® < A x A is a void relation.

2.4.7 Properties of Relations in a Set

Reflexive relation : A relation R is called reflexive relation if (a, a)
e R, for all a € A; that is, R is reflexive if every element in A is
related to itself.
Thus, R is reflexive if aRa for all a € A.
Example: Let A= {1, 2, 3}. Then
i) therelation R ={(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)} is a reflexive
relation since for every a € A, (a, a) € R.
ii) the relation R = {(1, 1), (1, 2), (2, 3), (3, 3)} is not a reflexive
relation since for 2 € A, (2, 2) ¢ R.
Anti-reflexive or Irreflexive Relation : A relation R in a set A is
said to be anti-reflexive or irreflexive if for every a € A, (a, a) ¢ R. In
other words, there is no a € A such that aRa.
Example:
i) Therelation R={(1,2),(1,3),(2,1),(2,3)}inasetA={1, 2, 3)
is anti-reflexive since (a, a) ¢ R for every a € A.
i) Therelation R={(1,1), (2, 3), (3,4)}inthesetA={1, 2, 3, 4}is
not anti-reflexive since (1, 1) € R.
Symmetric Relation : Arelation R in a setAis said to be symmetric
relation if (a, b) e R= (b, a) e R.
Thus, R is symmetric if bRa holds whenever aRb holds.
Example:
i) R={(1,1),(1,2),(1,3),(2,2),(2,1), (3,1)}in a set
A ={1, 2, 3} is a symmetric relation.
i) R={(x,y) e RxR:|x-y|>0}is asymmetric relation on R, the
set of real numbers.
Remark: Since (a, b) e R= (b, a) e R, thus R is symmetric relation
if and only if R = R~
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Anti-Symmetric Relation : Arelation R in a set A is said to be
anti-symmetric relation if (a, b) e Rand (b,a) e R=>a=b
A relation R in a set A is not anti-symmetric if there exists

elements a, b € A, a = b such that (a, b) e Rand (b, a) e R.

Example:

i) Therelation R ={(1, 2), (2, 2), (2, 3)}inasetA={1, 2, 3}isan
anti-symmetric relation.

i) The relation R ={(x, y) € R? | x <y} is an anti-symmetric relation
on R since x<yandy <ximplies x =y.

Thus, (x,y) e Rand (y,x) e R=>x=y.

ii) Let S be the set of straight lines in a plane. The relation Rin S
defined as ‘x is perpendicular to y’ is not anti-symmetric, since
if straight line a is perpendicular to the straight line b, then b is
perpendicular to a also. Buta cannot be equaltobi.e. (a,b) e R
and (b, a) e Rbuta=b.

Transitive Relation : Arelation Rin a set A is said to be transitive

relation if whenever (a, b) e Rand (b, c) e Rthen (a, ¢c) e R, i.e. aRb

and bRc = aRc. Arelation R in a set is not transitive if there exists

elements a, b, c € A, such that (a, b) e R, (b, ¢) e Rbut (a, c) e R.

Example:

i) Let S be the set of straight lines in a plane. The relation Rin S
defined by ‘x is parallel to y’ is transitive, because if a line x is
parallel to the line y and if y is parallel to the line z, then x is
parallel to z.

i) The relation ‘is less than’ is transitive on the set of real numbers.
If a<bandb <cthen a < c for real numbers a, b, c.

i) Therelation R={(1, 2), (2, 1), (2, 3), (3, 2)}in the setA={1, 2, 3}
is not transitive since (1, 2) e Rand (2, 3) e Rbut (1, 3) ¢ R.

2.4.8 Equivalence Relation

Arelation R in a set A is an equivalence relation in A if and

only if-
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NOTE
The relation in example
(ii) is called the relation
of congruence which is
defined as follows :
Let m > 1, G a positive
integer. Then fora, b e
Z.‘ais congruent to b
modulo m’, denoted by
a * b (mod m), if (a—b) is
divisible by m. It can be
proved that this is an
equivalence relation [to
prove it, replace 5 by m

in (ii)]

i)
i)
i)

Ris reflexive i.e. foralla € A, (a, a) e R.
R is symmetrici.e. (a,b) e R= (b,a) e R

R is transitive i.e. (a,b) e Rand (b,c) e R=(a,c) e R

Example:

)

Let A be the set of all triangles in a plane. Let R be the relation
in A defined as xRy if and only if x is congruent to y, for x € A
andy € A. Here
a) xRx for every x € A, since every triangle is congruent to
itself. Thus, R is reflexive.
b) xRy = yRXx, since if triangle x is congruent ot the triangle y,
then y is congruent to x. Thus R is symmetric.
c) xRy and yRz = xRz, since the triangle x is congruent to y,
and triangle y is congruent to z, so triangle x is congruent to
z. Hence, R is transitive.
Since R is reflexive, symmetric and transitive, R is an
equivalence relation.
Let R be a relation in the set of integers Z defined by
R={(x,y):xeZ,y € Z, x—y is divisible by 5}
Here we have
a) Foreachx € Z, x—x =0 and 0 is divisible by 5,
therefore, xXRx, ¥V x € Z.
b) Let xRy. Then xRy = x -y is divisible by 5
= —(x —y) is is divisible by 5
=y — x is divisible by 5
= yRx
c) Let xRy and yRz.
Then, xRy and yRz
= X — Yy is divisible by 5 and y — z is divisible by 5
= (x—y) + (y — z) is divisible by 5
= x — z is divisible by 5
= xRz.
Since R is reflexive, symmetric and transitive, therefore, R

is an equivalence relation.
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Theorem 2: If R be an equivalence relation in a set A, then R is
also an equivalence relation in A.
Proof: Let R be an equivalence relation in a set A. Therefore, R is
reflexive, symmetric and transitive.
Let a, b, c € A be any three elements. The relation R is
i) reflexive: (a, a) € R'since for all (a, a) e R = (a, a) e R
i) symmetric: (a, b) e R""= (b, a) e R
since, (a,b) e R"=(b,a) e R
= (a, b) e Ras R is symmetric
= (b, a) e R
i) transitive: (a, b), (b,c) e R"'= (a, c) e R
since (a, b), (b,c) e R"= (b, a), (¢, b) e R
= (c, b),(b,a) e R
= (c, a) € R as Ris transitive
= (a,c) e R
Therefore, R is reflexive, symmetric and transitive and hence

R-'is an equivalence relation in A.

2.49 Equivalence Classes or Equivalence Sets

Let A be a non-empty set and R be an equivalence relation
in A. Also let a be an arbitrary element of A. Then the element x € A
satisfying xRa constitutes a subset of A, called equivalence class
of a, denoted by [a] or cl(a).

Thus, [a] ={x:x € Aand (x, a) € R}

[a] is a non-empty subset of A since a < [a].
Example: The equivalence relation R = {(1, 2), (2, 1), (1, 1), (2, 2),
(3,3),(4,4)} onS={1, 2, 3, 4} has the following equivalence classes.

[M1=121={1,2} [3] = {3} [4] = {4}
Example: Let S be the set of all triangles in a plane and let R be an
equivalence relation in S defined by ‘x is congruenttoy’, x,y € S.
When a € S, the equivalence class [a] is the set of all triangles of S
congruent to the triangle a. Similarly, when b € S, then equivalence

class [b] is the set of all triangles of S congruent to the triangle b.
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Properties of Equivalence Classes :
Theorem 3 : Let A be a non-empty set and R be an equivalence
relation in A and a and b be arbitrary elements of A. Then
i) aela]
i) Ifb e [a], then [a] = [b]
i) [a] =[b] if and only if (a, b) € R
iv) Either [a] =[b] or [a] N [b] = ® i.e. two equivalence classes are
either equal or disjoint.
Proof: i) R being an equivalence relation, it is reflexive, i.e. aRa
and [a] = {x : x € A and xRa}
Hence, aRa = a € [a]
i) We have b € [a] = bRa
Let x be any arbitrary element of [b].
Then x € [b] = xRb. But R is transitive, therefore, xRb
and bRa = xRa = x e [a].
Thus x € [b] = x e [a]. Hence [b] c [a].
Again, let y be any arbitrary element of [a].
Theny e [a] = yRa.
Since R is symmetric, therefore, bRa = aRb.
Now, R being transitive, yRa and aRb = yRb = y € [b]
Thus y € [a] = y e [b]. Therefore [a] < [b].
Hence [a] = [b].
iii) We assume that [a] = [b]
Since R is reflexive, we have aRa.
Again aRa = a € [a] = a € [b] since [a] = [b] = aRb
Hence [a] = [b] = aRb i.e. (a, b) e R.
Conversely, we assume that (a, b) € Ri.e. aRb.
Let x be any arbitrary element of [a]. Then xRa. Since R
is transitive we have xRa and aRb = xRb = x € [b]
Thus, x € [a] = x € [b], that is [a] < [b].
Again, let y be any arbitrary element of [b].
Theny € [b] = yRb.

R being symmetric aRb = bRa.
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Again R being transitive, yRb and bRa = yRa = vy € [a]
Therefore, y € [b] = y € [a], that is [b] < [a].
Hence [a] = [b].
iv) If [a] » [b] = @ then there is noting to prove.
So we assume that [a] N [b] = ©.
Therefore, there exists an element x € A such that
x € [a] N [b].
Now x e [a] N [b] = x € [a] and x € [b]
= xRa and xRb
= aRx and xRb, as R is symmetric
= aRb, as R is transitive
= [a] = [b] [by (iii)]
Therefore, [a] N [b] # ® = [a] = [b].

2.4.10 Partitions

Let S be a non-empty set. Then a partition of S is a collection
of non-empty disjoint subsets of S whose union is S. For example,
let A, A, ....A be non-empty subsets of S.

ThenthesetP ={A A, ..., A }is said to be a partition of S,
if i) AJUA,U...UA =S

i) Either A, =AJ. orAimAj= dfor1<i<j<n
Example: Let us consider the set S ={1, 2, 3, .... 9, 10} and its
subsets B, = {1, 3}, B,={7, 8, 10}, B,={2, 5, 6} and B, = {4, 9}.

The set P = {B,, B,, B,, B,} is a partition of S since

i) BjuB,uB,uUB,=Sand
ii) Forany two sets B, BJ. we have B N BJ.= D,i#]j.
Example: Let Z be the set of all integers. We know that xy(mod 5)
is an equivalence relation in Z. We consider the set of five
equivalence classes [0], [1], [2], [3], [4] where

[01=¢{...,-10,-5,0, 5, 10, ...}

M11=4{..,-9,-4,1,6,11, ...}

21={....,-8,-3,2,7,12, ...}

Discrete Mathematics 45



Unit 2

Relations

[81={...,-7,-2,3,8,13, ...}
[4]1={...,-6,-1,4,9,14, ...}
Obviously,
i) The sets are non-empty.
i) The sets [0], [1], [2], [3], [4] are pair-wise disjoints.
i) Z=[0]u1lul21u[3]u [4]
Hence {[0], [1], [2], [3], [4]} is a partition of Z.

2.4.11 Relation Induced by a Partition of a Set

Corresponding to any partition of a set A it is possible to
define a relation R in A by the requirement that xRy if and only if x
and y belong to the same subset of A belonging to the partition.
The relation R is then said to be induced by the partition.
Example: LetA={3,6,9, ...,24},B={1,4,7, ...,25},C={2,5, 8,
..., 23} be the subsets of the set S = {1, 2, 3, 4, ...., 25}

Obviously, AUBuC=SandAnB=AnC=BnNnC=®so
that {A, B, C} is a partition of S. If R be the relation induced by this
partition then we have xRy if and only if x and y belong to the same
subsets of A, B, C.

Theorem 4 : (Fundamental theorem on equivalence relation) An
equivalence relation R in a non-empty set A forms a partition of A
and conversely, a partition of A defines an equivalence relation in A.
Proof: Let R be an equivalence relation defiend in a non-empty set
A. Let P be the set of equivalence classes of A with respect to the
relation R. Thus P = {[a] : a € A} in which [a] = {x : x € A and xRa}.

Since R is an equivalence relation, for all a € A, we have
aRa. Thus, a € [a] and [a] # ®.

Now every element a € A is an element of [a]. Hence we
have A = [a], where a € A. Again equivalence classes are either
identical or disjoint. Hence P is a partition of Awhich implies that an
equivalence relation decomposes the set into equivalence classes,

any two of which are either identical or disjoint.
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Conversely, let P ={A_,A_,A_, ...} be a partition of the set A
and let x, y € A. We define a relation R in A by xRy if and only if
there is an A in P such that x, y € A.

Let x be any arbitrary element of A. Then there exists A eP
such that x € A, i.e. xRx. Thus for all x € A, xRx i.e. R is reflexive.

Again, if xRy, then there exists A € P

suchthatx e Ajandy € A,

Butxe Aandy e A =y eAandx € A = yRx

Therefore, R is symmetric.

Again let xRy and yRz. By definition of R there exists subsets
Ajand A,suchthatx,y e Ajand y,ZeA, .(Ajand A, are not necessarily
distinct).

Now y e Ajand alsoy € A, therefore AJ. NA = .

But A and A, belong to the partition P of A. So, AN A = ®
implies AJ. =A,. Now AJ. =A, impliesx,z e AJ. and hence we have xRz.

Therefore, xRy and yRz = xRz i.e. R is transitive.

Thus, R being reflexive, symmetric and transitive is an

equivalence relation.

2.4.12 Quotient Set

LetAbe a non-empty set and let R be an equivalence relation
in A. The set of all mutually disjoint equivalence classes in which A
is partitioned relative to the equivalence relation R, is said to be the
quotient set of A for the equivalence relation R, and is denoted by
AR or A.
Example: The quotient set of Z for the equivalence relation
congruence modulo 5 is the set Z/R = {[0], [1], [2], [3], [4]}

2.4.13 Partial Order Relation

Let A be a non-empty set. A relation R on A is said to be a
partial order relation if R is reflexive, anti-symmetric and transitive.
That is,
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1. Reflexivity: aRaforalla e A
2. Anti-symmetry : aRbandbRa = a=>b
3. Transitivity : aRb and bRc = aRc
Anon-empty set Atogether with a relation of partialy ordered
R is called a partial order set or poset and is denoted by (S, R).
Example: The greater than or equal (>) relation is a partial order
relation on Z, the set of integers.
Reflexive: since a > a for every integer a
Anti-symmetric: sincea>band b >aimplya=>b
Transitive: sincea>band b > c imply a > c.
Hence, > being reflexive, anti-symmetric and transitive is a

partial ordering on Z and (Z, >) is a poset.

[7—
" y 4
a

' CHECK YOUR PROGRESS

A\

Q.4. Given S={1, 2, 3, 4}. Consider the following relation in S :
S={(1,1),(2,2),(2,3), (3, 2), (4,2), (4, 4)}
Is R (i) reflexive, (ii) symmetric (iii) transitive or (iv) anti-
symmetric?

Q.5. Determine which of the following are equivalence relations
and / or partial ordering relations for the given sets?
i) G ={lines in the plane : xRy = x is parallel to y}

i) H = {the set of real numbers : xRy = [x —y| < 7}

: _} 2.5 LET US SUM UP
TN

® The cartesian products of A and B, denoted by A x B, is the set of

all ordered pairs of the form (a, b) where a e Aand b € B.

® | etAand B be two sets. A relation from set A to B is a subset of the
cartesian product A x B.

® The Domain D, denoted by Dom(R), of a relation R is defined as

the set of all first elements of the ordered pairs which belong to R.
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® The Range E, denoted also by Ran(R), of the relation R is defined
as the set of all second elements of the ordered pairs which belong
to R.

® Every relation R from the set A to the set B has an inverse relation
R from B to A. i.e. xRy = y R'x

® Arelation Rin a set Ais said to be
i) reflexive ifaRa v a € A
i) symmetric if aRb = bRa fora,b € A
iii) transitive if aRb, bRc = aRc fora, b, c € A
iv) anti-symmetric if aRb, bRa = a=bfora,b e R

® Arelation Rin a set Ais an equivalence relation in A if and only if

— R is reflexive, Symmetric and Transitive.

A{ 2.6 ANSWERS TO CHECK YOUR PROGRESS

Ans.to Q. No.1: i) P x Q = {(North, House), (North, Garden), (South,
House), (South, Garden), (West, House), (West, Garden)}
i) Q x P = {(House, North), (House, South), (House, West),
(Garden, North), (Garden, South), (Garden, West)}
i) P x P ={(North, North), (North, South), (North, West), (South,
North), (South, South), (South, West), (West, North), (West,
South), (West, West)}
Ans.toQ.No.2: 2"
Ans. to Q. No.3: i){2,3} ii){3,4,5} iii){3,4,5} iv) (2,3}
Ans.to Q. No.4: i)No ii) No iii) No iv) No
Ans. to Q. No. 4 : i) Itis an equivalence relation but not a partial ordering
relation since R is not anti-symmetric.

ii) Not transitive, therefore, it is neither.

2.7 FURTHER READINGS

1. C. L. Liu, Elements of Discrete Mathematics, Tata McGraw-Hill
Edition.
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2. Seymour Lipschutz, Marc Lars Lipson, Discrete Mathematics, Tata

?

Q.1.

Q.2.

Q.3.

Q.4.

Q.5.

Q.6.

McGraw-Hill Edition.

2.8 MODEL QUESTIONS

The relation R on the set {1, 2, 3, 4, 5} is defined by the rule that
(x, y) € Rif 3 divides x —y. Find

i) The element of R i) The elements of R
iii) The domain of R iv) The range of R
(v) The domain of R vi) The range of R

Give example of a relation which is
i) symmetric, reflexive but not transitive
i) symmetric and transitive but not reflexive
iii) reflexive, transitive but not symmetric
iv) neither symmetric nor anti-symmetric
Show that the relation R is on a set S is symmetric if and only if
the converse relation R'is symmetric.
Show that the relation R ‘less than or equal to’ on the set of integers
is a partial order relation.
Let S be the set of non-zero integers and let R be the relation on
SxS, defined by (a,b) € R(c,d) < ad = bc
i) Show that R is an equivalence relation
i) Find [(1,2)]
In the set N of positive integers, we say that “a divides b”, in symbol
a/b, if b = ak for some k € N. Show that this relation is a partial

order in N.
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Further Readings

Model Questions

31 L

EARNING OBJECTIVES

After going through this unit, you will be able to :

learn about the concepts of functions
differentiate between relation and function
learn the types of funtions

describe composite functions and its properties

describe binary operation and its different types.
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3.2 INTRODUCTION

For a function f: A—B
each element in the set
A must be associated to
one and only one
element in set B. But,
there may be some
elements in the set B
which are not associated
to any element in the set
A.

One of the most important concepts in mathematics is that of a
‘function’. 1t is a special kind of relation between two non-empty sets.
Informally, a function is an “operation” which takes an input value and
gives an output value. There are other terms such as ‘map’ or ‘mapping’
used to denote a function. From the computer science perspective,
functions play a vital role. In this unit, we will introduce you to the concepts
of functions. Moreover, we shall discuss about the types of function and

composite functions and its properties.

3.3 FUNCTIONS

A function or mapping ffrom a set A to set B denoted by f: A»>Bis
a rule that assigns to each element x in A exactly one element y in B.

The function is read as ‘fis a function from A to B’.

A function can also be denoted by f: A->B or A 5B or

A function can be represented diagramatically as

Example: LetA={1, 2, 3,4} and B = {1, 4, 9, 16} be two sets and
f assigns to each element x of A a unique element x?in B. Then fis a
function from A to B. Thus, we may write

f(1)=1, (2)=4, f(3)=9 and f(4) = 16.

The function fis defined as f(x) = x* V x € A.

Example: Let A={2, 3,4} and B = {4, 9} and if fassigns to each
element of A its square values then fis not a function from A to B, since no

number of B is assigned to the element 4 € A.
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3.4 RANGE AND DOMAIN OF A FUNCTION

If fis a function from a set A to the set B, then the set Ais called the
domain of the function f and the set B is called the co-domain of the
function f. The element y € B which the function fassociates to an element
x € Alis denoted by f(x) and y = f(x) is called the image of x under f or f-
image or the value of the function f for x. The element x is called the pre-
image of y or f(x).

The set f{A) = {f (x) | x € A} consisting of all images of the elements
in A under the function fis called the range of f. Clearly, f(A) < B.

Example: Let A={-1,1, 3,4t and B ={1, 2, 9, 16} and be a
function defined by f(x) = x? for all x in A.

Domain of f={-1, 1, 3, 4}

Co-domainof f={1, 2, 9, 16}

Range of f= {1, 9, 16}

3.5 FUNCTIONS AS SETS OF ORDERED PAIRS

A function ffrom a set Ato a set B is a relation such thateverya e A
is related to exaclty one b € B. That is,
i) VYaeA 3IbeBsuchthat(a,b)ef
i) ForaeA,andb,,b,eB; (a,b,)ef,(a,b,)ef=b,=b,
Example: LetA={a, b,c,d}, B={p,q, r}.
Then f={(a, p), (b, q), (c, p), (d, r)} is a function from Ato B,
where fla)=p, flb)=q, flc)=p, (d)=r
Example: LetA={a, b, c,d}, B={p, q, r}.
Then f={(a, p), (b, q), (a, r), (d, r)} is not a function since p and r in
B are assigned to the same element a € A.
Example: LetA={a, b, c,d}, B={p, q, r}.
Then f={(a, p), (b, q), (c, p)} is not a function since no element in B

is assigned to the elementd € A.

NOTE

For a function f: A»>B
each element in A has a
unique image and each
element in B need not
appear as the image of
an element in A. There
may be more than one
element of A which have
the same image in B.
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NOTE
If A, B are subsets of the
real numbers set R, then
a function f: A>B is
called a real valued
function of real numbers.
Generally, this function is
simply denoted by f(x)
for x € R. Its domain is
taken as the largest
subset of R for which
f(x) e R.

3.6 DIFFERENCE BETWEEN RELATIONS AND
FUNCTIONS

We know that every subset of A x B is a relation from A to B. Thus
every function is a relation, but every relation is not a function. In a relation
from A to B, an element of A may be related to more than one element in B.
Also, there may be some elements of A which may not be related to any
element in B. But in a function from A to B, each element in A must be
associated to one and only one element in B.

Example : Let X={1,2, 3,4} and Y = {a, b, c} be two sets.

Then f = {(1, a), (2, b), (3, ¢), (4, ¢)} is a function as well as a
relation. But if we consider a subset S of X x Y as

S ={(1, a), (2, b), (1, ¢), (3, ¢), (4, b)}, then S is a relation from A to
B. But, S is not a function since 1 in X is associated with two different

elementsaandcin.

= 7
<MW T CHECK YOUR PROGRESS
3x—-4 x>0
Q.1. Afunction f: A>R is defined as f(x) = {—3X+ 2 %<0
Determine f(0), (2/3), f(-2).
Q.2. LetA={-2,-1,0,1, 2}. Afunction f: A—>R is defined as
f(x) = x2 + 1. Find the range of f.
Q.3. Determine whether or not the followins are functions from A
toBwhereA={1,2,3,4,5} and B={a, b, ¢, d, €}
) f,={(1,2),(2,b), (3, b), (5 e)
i)y f,={(1,e), (5 d), (3, a), (2 b), (1,d), (4, a)}
i)y f,={(5,a),(1,e), (4, b),(3,¢), (2, d)}
Q.4. Find the domain D of each of the follwoing real-valued
functions of a real variable :
1 i}
i) fix)= ? i) f(x)= \25_x2
i) fix)=x>-3x-4 iv) f(x) =x*where 0 <x<2
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3.7 TRANSFORMATION OR OPERATORS

If the domain and co-domain of a function f are both the same set
i.e., f: A=A, then fis called an operator or transformation on A.

Example : f: N—>N, f(n) =2n+1 ¥ n € N is an operator on N.

3.8 EQUALITY OF TWO FUNCTIONS

Two functions fand g defined on the same domain A are said to be
equal if and only if f(ix) = g(x) for all x in A and we write f=g.

Example : Let f: N>N, g : NN, h : N>N be three functions
defined by f(n) = 2n, g(n) = 2m, h(n) =2n + 1. thenf=g, f = h.

3.9 TYPES OF FUNCTIONS OR MAPPINGS

3.9.1 Into Function

A function f: A—B is called into function if there exists at
least one element in B which is not the image of any element in A

i.e., the range of fis a proper subset of co-domain of f.

Example: Let Z be the set of integers and f: Z—Z be defined by

f(x) = 2x ¥ X € Z. Then fis an into function because f(Z) c Z.

3.9.2 Onto Function

Afunction f: A—B is called onto or surjective if every element
in B is the image of at least one element of A, i.e., the range of fis

equal to the co-domain of f.
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Afunction f: A—>B is
called a bijective function
if f is both one-one and
onto.

To prove that f: A—>B is onto, we show thatfory e B,3x e A
suchthaty =f(x). Theny € B =Yy € f(A). Having chosen y arbitrarily,
every element of B is an element of f(A) and hence B < f(A). But
f(A) < B. Therefore, B = f(A) and the function f is onto.

Example: Let f: R—R be a function defined by f(x) = x2,v X € R.
fis not an onto function because there is no real number whose
square root is negative. Hence the range of f cannot be equal to R.
Example: Let f: Z—Z be defined by f(x) =x + 1, X € Z. Then every
element y in co-domain set Z has a pre-image y—1 in domain set Z.

Thus, f(Z) = Z and fis an onto function.

3.9.3 One-One Function

A function f: A—>B is said to be one-one or one to one if
different elements in A have different images in B. i.e,, x, # x,=

f(x,) # f(x,), where x,, x, € A. Equivalently, f(x,) = f(x,) = x, = X,.

An one-one function is also known as injective function.

If we are to prove that a function fis one-one, we have to show that

if f(x,) = f(x,) then x, = x,, where x, and x, are arbitrary elements of domain

of function f. We can also prove it by showing that if x, # x, then f(x.) # f(x,).
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Example: Let f: R—>R be defined by fix) =2x + 1, x e R.
Then for x,, x, € R and x, # x, we have f(x,) # f(x,).

So fis an one-one function.

3.9.4 Many-One Function

A function f : A—»B is said to be many-one if two or more
elements in A have same images in B. i.e. f(x,) = f(x,) = x, = X,
where x,, X, € A.

Example: Let f: R—R be defined by f(x) = x2, x € R.

Then f(1)=12=1 and

f=1)=(-1) =

Thus f(—1) = f(1), but —1 # 1 and hence f is many-to-one.

3.9.5 Constant Function

A function f: A—»B is said to be a constant function if a
single element b B is assigned to each elementinA.i.e. f:A—>Bis
a constant function if the range of f consists of only one element,
fix)=b vXxeA.

Example: f: R—>R be defined by f(x) = 3, x € Ris a constant function

since 3 is assigned to each element in A.

3.9.6 Identity Function

Afunction f: A—>Adefined by f(x) =x for every x in Aiis called
an identity function of A. It is generally denoted by 1, i.e.,

L, A=A L (X)=xVXxeA
Example: LetA={a, b, c, d}. Then f={(a, a), (b, b), (c, ¢), (d, d)} is

an identity function in A.

3.9.7 Inverse Function

Inverse Image of an Element : Let f be a function from Ato B and let

b € B. Then inverse image of element b under fis denoted by ~'(b)
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NOTE
Only one-one and onto
function possesses
inverse function because

(i) if the function f: A>B
is not onto, then there
will be some elements in
B which will have no pre-
images in A.

(i) if the function f: A—B
is not one-one then the
elements in B will be
assignd more than one
element in A.

(read as ‘f inverse b’) and consists of those elements in A which
have b as their f~image.

Thus if f: A—B, then f'(b) = {x € A| f(x) = b}

Clearly, f'(b) c A.
Example: Let f : R—»>R be a function defined by f(x) = x2, x € R.
Then f'(25) = {-5, 5}.
Inverse Function : Let f: A>B be a one-one and onto function.
Then the function f' : B—>A which assigns to each elementb € B
the element a € A such that f(a) = b, is called the inverse function
of f: A—B. Clearly, f'(b) =a < f(a) = b.
Example: LetA={1, 2, 3,4} and B ={a, b, c, d} and let be given by
f={(1,a), (2, a), (3,d), (4, c)}. Then f': B—>Ais not a function since
fli(a) ={1, 2}
Example: Let the function f: R—R be defined by f(x) = x2.

Then f'(4) ={x e R:f(x)=4}

={x e R:x2=4}
={x e R:x=+2}
={-2,2}

and f'(-4) ={x e R:f(x)=-4}
={x e R:x*=-4}

={xeR:x=%2/-1}=¢

since 12\/—_1 is an imaginary number.

Theorem: If f: A—B is one-one and onto function, then ' : B>Ais
also one-one and onto.
Proof: First we shall show that ' is one-one.

Lety, and y, be any two elements in B such that f'(y,) = x,
and f'(y,) = x, where x,, x, € A. Then by definition of ', f(x,) =y,
and f(x,) =y,

Now f(y,) = f(y,) = Xx,=X,

= f(x,)= f(x,)
=Y =Y,

The function f' is one-one.
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Now we show that ' is onto.

Let x be any arbitrary element of A. Since f is function from
Ato B, therefore there exists an element y € B such that y = f(x) or
x = F'(y). Thus x is the ' image of the element y € B. Hence, the
function ' is also onto.
Theorem : If f: A—>B is one-one and onto, then the inverse function
of f is unique.
Proof: Let f: A—>B is one-one and onto. Let g : B>Aand h: B>A
be two inverse funtions of f. To prove that f = g.

Let b be any arbitrary elementin B. Let g(b) =a and h(b) = c.
Since g is the inverse function of f, therefore, g(b) = a = f(a) = b.
Also since h is the inverse function of f, therefore, h(b) = ¢ = f(c) = b.
But fis one-one. Therefore, fla) = b and fic) =b = a=c = g(b) = h(b).
Hence g = h the inverse function of f, therefore, h(b) = ¢ = f(c) = b.
But fis one-one. Therefore, fla) = b and fic) = b = a = c = g(b) = h(b).
Hence g = h.

[ A
N /
G /

o\

CHECK YOUR PROGRESS

Q.5. Show that the function f: R—R defined as f(x) = cosx, x e R
is neither one-one nor onto.
Q.6. GiventhatA=R-{3}and B = R - {1}, where R is the set of

Xx-3

real numbers and f: A—B is defined by , X € A. Prove

that f is one-one and onto.

Q.7. If the function f: R—>R is defined by f(x) = 2x — 3. Find .

3.10 COMPOSITION OF FUNCTIONS

Let f: A»B and g : B—»>C. Then the composition of fand g denoted
by (g o f) or gfis a function from A to C given by
(gof): A>Csuchthat (go N(Xx)=g[f(X)] ¥V x € A
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Example: Let f: R—>R and g : R—»R be two functions given by

f(x) = 2x + 1 and g(x) = x2

Now (g o f) : R—>Ris given by

(goN(X)=glfix)] =g@2x+1)=(2x+ 1)?=4x>+ 4x + 1

and (fo g)(x) = flg(x)] = f(x*) = 2x* + 1

In general, (gof)#(fo Q)

Theorem: If f: A—>B, g: B—»C and h: C—D,
thenho(gof)=(hog)of

Proof: Since f: A>B and g: B—>C and h: C-D,

so(gof):A—»Cand(hog): B-D.

Alsoho(gof):A—»Dand (hog)of:A-D

Letx € A,y € B, z € C such that f(x) =y and g(y) = z.

Then [(h o g) o fl(x) = (h o g)Ifix)] = (ho g)(y)

=hlgiy)l=h(zy .. (i)
Also, [(h o g) o fl(x) =[ho(goNX)] = hI(g of)(X)
= hlg(fx))] = hig(y)] = h(z) ... (ii)

From (i) and (ii) we get
[ho(goN](x)=1[ho(goN](x)forall xinA.
Hence, ho(gof)=(hog)of
Theorem: If f: A—»B and g : B—»C be one-one and onto functions,
then (g o f) is also one-one and onto and (gof)'=f'og.
Proof: Let x, and x, be any two elements in A.
Then (g 0 Ai(x,) = (g 0 (x,) = glfx,)] = gfix, )]
= f(x,) = f(x,)
[since g : B—C is one-one and f(x,), f(x,) € B]
= X, = X, [fis one-one]
Therefore, (g o f) is one-one.
Let z be arbitrary element of C. Since is onto, 3y € B such that
g(y) = z. Again since is onto, IX € Asuch that f(x) =y. Thus forevery z € Z,
3Ix € A such that. Hence, z = g(y) = g[f(x)] = (g o f)(x). Hence, (g o f) is onto.
As is both one-one and onto, so (g o f)" exists.
By definition of composite function (gof) : A—>C. So (gof)" : C>A.
Alsog’: C»>Aand f':B—A. The domain of (g o f)' = the domain of f'og™".
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Now (gof)'(z)=x < (gof)(x)=2z
< g(fix)) =z
<gly)=2
©y=g"(2)
< Fiy)=Ff(g(2)) = (F og")(2)
<x=(Flog’)(z)
Thus, (9o f)"' (z)=(f'og”')(z) VZze Candso(gofy'=f"og"

3.11 BINARY OPERATIONS

A binary operation ‘+’ on a non empty set A is a function which
associates with each ordered pair (a, b) of elements of A, a uniquely defined
element ¢ € A. Thus “«” is a function of the product set A x A to A.

Closure Operations : A set A is said to be closed with respective
to the operation « if foralla,b e A,a x b € A.

Commutative Operations : A binary operation on a set Ais called
commutative ifaxb=b «xa, foralla,b € A.

Associative Operations : A binary operation = on a set Aiis called
associative if (@« b)xc=ax (b xc), foralla, b, c € A.

Distributive Operations : Let A be a set on which two binary
operations e and x are defined. The operations is said to be left distributive
with respectiveto eifax (b« c)=(axb)e(a=xc), foralla,b,c e Aandis said
to be the right distributive with respective tooif (b e c) a= (b x a) e (c x a),
foralla, b, c € A.

Identity Element : Let x : Ax A— A be a binary operation on A. An
element e € A is called an identity element for the operation = if e x a =
axe=a,foralla eA.

Inverse Element : An element a € Ais said to have an inverse element
with respect to a binary operation x with identity e if there exists b € A such
thata « b=e =b x a. Then b is called an inverse of a and is denoted by a™.

Cancellation laws : The cancellation laws, under the binary
operation % on a set A are

i) axb=axc< b=c (left cancellation law)

i) bxa=c=xa<b=c (right cancellation law)
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o\
S

Q.8. Letf: R—R be given by f(x) = x? and g : R—>R be given by

Q.9. Letthe functions f: R—>R and g : R—>R be defined by f{(x) = 2x

S

CHECK YOUR PROGRESS

g(x) = x + 3. Calculate (fo g)(2) and (g o f)(2).

and g(x) = x2 + 2, ¥x € R . Find the formulae defining the

functions (fo g) and (g o g). Obtain (fo g)(2) and (g o g)(1).

: J‘% 3.12 LET US SUM UP

T\

FE

A function or mapping ffrom a set Ato set B denoted by f: A>Bis a
rule that assigns to each element x in A exactly one elementy in B.
If fis a function from a set A to the set B, then the set Ais called the
domain of the function f and the set B is called the co-domain of
the function f.

A function ffrom a set Ato a set B is a relation such that every a ¢ A
is related to exaclty one b € B.

A function f: A—B is called into function if there exists at least one
element in B which is not the image of any element in A.

A function f: A—B is called onto or surjective if every element in B
is the image of at least one element of A.

A function f: A—B is said to be one-one or one to one if different
elements in A have different images in B. i.e. f(x,) = f(x,) = X, = X,
where x,, X, € A.

A function f: A—B is said to be many-one if two or more elements in
A have same images in B. i.e. f(x,) = f(x,) X, = X, where x,, X, € A.
A function f: A—>A defined by f(x) = x for every x in A is called an

identity function of A.
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@ 3.13 ANSWERS TO CHECK YOUR PROGRESS

Ans.toQ.No.1: 2, -2, 8
Ans.toQ.No.2: {5, 2,1}
Ans.to Q. No.3: i)No i) No iii) Yes
Ans.to Q. No.4: i)D=R\{2} i)D={x e R: -5 <x <5}
ii)D=R ivyD={xe R:0<x<2}
X+3

Ans.to Q. No.5: f'(x)= 5

Ans.to Q. No. 6: left as an exercise

Ans. to Q. No. 7 : left as an exercise

Ans.toQ.No.8: 25,7.

Ans.to Q. No.9: (fog)(Xx)=2x>+4,(gog)(x)=x*+4x>+6 ¥x € R.

(fo 9)(2) =12, (g0 g)(1) = 11.

3.14 FURTHER READINGS

1. C. L. Liu, Elements of Discrete Mathematics, Tata McGraw-Hill
Edition.

2. Seymour Lipschutz, Marc Lars Lipson, Discrete Mathematics, Tata
McGraw-Hill Edition.

¥4 315 MODEL QUESTIONS

Q1. LetA={1,2,3}and B ={8, 9}
Find whether the following subsets of AxB are functions from A to
B.
) £={(1,8),(1,9), (2 8), (3, 9)}
i) g={(1.9), (2,9), (3.9)}
i) h={(1,8),(2,9), (3, 9)}
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Q.2.

Q.3.

Q.4.

Q.5.

Let Q be the set of all rational numbers. Prove that the function
f: Q—>Q defined by f(x) = 5x + 2, x € Q is a bijective function.
Find .

X
Is the function f: R — {0}—>{-1, 1} defined by f(x) = m bijective?
If f: A—>B is invertible with inverse function f' : B—A, then prove
that"of=1,and fof' = 1.

Show that the composition a « b =ab?, a, b € R is not associative.
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4 : INTRODUCTION TO MATHEMATICAL LOGIC

UNIT STRUCTURE

4.1
4.2
4.3

4.4

4.5
4.6
4.7
4.8
4.9

Learning Objectives

Introduction

Definition of Statements

4.3.1 Examples of Statements
Logical Connectives

4.4.1 Negation

4.4.2 Conjunction

4.4.3 Disjunction

4.4.4 Conditional Statements
4.4.5 Biconditional Statements
Converse, Inverse and Contrapositive of a Conditional Statement
Let Us Sum Up

Answers to Check Your Progress
Further Readings

Model Questions

4.1

LEARNING OBJECTIVES

After going through this unit, you will be able to :

® define statements and examples of statements

® define truth tables about different statements

® know about negation of statements

® know about conjuction, disjunction, conditional and bi-
conditional of two statements

® |earn about converse, opposite and contrapositive of statement.

4.2

INTRODUCTION

Mathematical logic or logic is the discipline that deals with the

methods of reasoning. As we all know, the main asset that makes humans

far superior to other species is the ability of reasoning. Logic provides rules

Discrete
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and techniques for determining whether a given argument or mathematical
proof or conclusion in a scientific theory is valid or not. Logic is concerned
with studying arguments and conclusions. Logic is used in mathematics to
prove theories and to draw conclusions from experiments in physical science
in our every day life to solve many types of problem. Logic is used in
computer science to verify the correctness of programs. The rules of logic
or techniques of logic are called rules of inference because the main aim of
logic is to draw conclusions and inferences from given set of hypothesis. In
this unit, we will introduce you to the definition and examples of Statements,
truth table of different statements. We will also discuss the logical
connectives. Discussing besides the converse, opposite and contrapositive

of statements.

4.3 DEFINITION OF STATEMENTS

We communicate our ideas or thoughts with the help of sentences
in a particular language. The following types of sentences are normally
used in our everyday communication.

Assertive sentence : A sentence that makes an assertion is called
an assertive sentence or declarative sentence.

For example, “Mars supports life” is an assertive or a declarative
sentence.

Imperative sentence : A sentence that expresses a request or a
command is called an imperative sentence .

For example, “please bring me a cup of tea” is an imperative sentence.

Exclamatory sentence : A sentence that expresses some strong
feelings is called an exclamatory sentence.

For example, “How big is the whale fish!” is an exclamatory sentence.

Interrogative sentence : A sentence that asks some questions is
called an interrogative sentence.

For example, “What is your age ?” is an interrogative sentence.

STATEMENT : A statement is an assertive (or declartive) sentence
which is either true or false but not both. The truthfulness, denoted by T or the

falsity, denoted by F of a statement is called the Truth value of the statement.
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4.3.1 Examples of Statements

ILLUSTRATION 1 : Consider the following sentences :
i) Washington D .C is not in America.

i) Every quadrilateral is a rectangle.

iii) The earth is a planet.

iv) Three plus six is 9.

v) The sunis a star.

Each of the sentences (iii) , (iv) & (v) is a true declarative

sentence and so each of them is a statement .

Each of the sentences (i) & (ii) is a false declarative sentence

and so each of them is a statement .
ILLUSTRATION 2 : Consider the following sentences :

Do your home work.

Give me a glass of water.

How are you?

Have you ever seen the Taj Mahal?
May god bless youl!

May you live long!

Sentences (i) & (ii) are imperative sentences, so they are

not statements. Each of the sentences (iii) & (iv) is interrogative.

So they cannot be statements. Similarly, (v) & (vi) are also not

declarative sentences and hence not statements.

]
r_ I
Z Xt
' CHECK YOUR PROGRESS
Q.1. Find out which of the following sentences are statements

and which are not — justify your answer.
i) Paris is in England.

i) May God bless you !

iii) 6 has three prime factors.

iv) 18 is less than 16.

v) How far is Chennai from here?
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Every rhombus is a square.
There are 35 days in a month.
Two plus three is five.
Xx+2=9

The moon is made of green cheese.

44 LOGICAL CONNECTIVES

Till now, we have considered simple or primary statements which

are declarative sentences, each of which cannot be expressed as a

combination of more than one sentence. We often combine simple (primary)

statements to form compound statements by using certain connecting words

known as logical connectives. Primary statements are combined by means
of connectives : AND, OR, IF — THEN, and IF AND ONLY IF, lastly NOT.

Now we will discuss in details compound statements and their truth

values expressed in a tabular form, called Truth Table.

4.4.1

Negation

The denial of a statement P is called its negation and is

written as ~P and read as ‘not P’. Negation of any statement P is

formed by writing “It is not the case that-" or “It is false that-" before

P or inserting in P the word “not”.

Let us consider the statement

P : All integers are rational numbers .

The negation of this statement is :

~ P : Itis not the case that all integers are rational numbers.
or

~ P : It is false that all integers are rational numbers.
or

~ P : ltis not true that all integers are rational numbers.

Consider now the statement, P:7>9

The negation of this statement is ~P :~(7>9)or~P: (7 <9)
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Truth Table of Negation : If the truth value of “P” is T, then the truth

value of ~P is F. Also if the truth value of “P” is F, then the truth value

of ~PisT.

The truth table of ~P is :

P ~P

T F

F T
Table 4.1

Illustrative Examples : Write the negation of the following

statements

i) ﬁisa

rational.

i) +/2is not a complex number.

iii) Every natural number is greater than zero.

iv) All primes are odd.

v) All mathematicians are men .

Solution :

i) Let P denote the given statement i.e.,

P: \/7 is a rational.

The negation of this statement is given by

~P : It is not the case that \/7 is a rational.

i) Letthe

The ne

or

~P: \/7 is not a rational.

or
~P: ltis false that +/7 is rational .
given statement be denoted by P i.e.,
P: \/E is not a complex number.
gation of this statement is given by

~P: \/E is a complex number.

or

~P : It is false that +/2 is not a complex number.
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ii)

The negation of the given statement is :
It is false that every natural number is greater than 0.
or
There exists a natural number which is not greater than 0.
The negation of the given statement is
There exists a prime which is not odd.
or
Some primes are not odd.
or
At least one prime is not odd.
The negation of the given statement is :
Some mathematicians are not men.
or
There exists a mathematician who is not man.
or
At least one mathematician is not man.
or

It is false that all mathematicians are men.

A

/

I

A\

)~

a

CHECK YOUR PROGRESS

Write the negation of the following statements -
i) Bangalore is the capital of Karnataka.

i) The Earth is round.

iii) The Sun is cold.

iv) Some even integers are prime.

v) Both the diagonals of a rectangle have the same length.

4.4.2 Conjunction

The conjunction of two statements P and Q is the statement

“Pand Q" which is denoted by P A Q. P, Q are called the components
of P A Q.
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lllustrative Examples :
i) The conjunction of the statements :
P : It is raining.
Q:2+2=4is
PAQ: ltisrainingand2+2=4.
i) Consider the statement :
The Earth is round and the Sun is cold.
Let Q: The Earth is round.
R : The Sun is cold.
Then Q A R : The earth is round and the Sun is cold.
Truth table : The statement P A Q has the truth value T whenever
both P and Q have the truth value T, Other wise it has the truth
value F.

The truth table for conjunction as follows :

P Q PAQ

T T T

T F F

F T F

F F F
Table 4.2

4.4.3 Disjunction

The disjunction of the two statements P and Q is the
statement “P or Q”, denoted by P v Q. P, Q are called the
components of P v Q.
lllustration 3
i) Consider the compound statement

Two lines intersect at a point or they are parallel.
The component statements of this statement are :
P : Two lines intersect at a point.

Q : Two lines are parallel.
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The given compound statement is the disjunction P v Q.

i) Consider another statement

45 is a multiple of 4 or 6.

Its component statements are :

P : 45 is a multiple of 4 .
Q : 45 is a multiple of 6.

The given compound statement is the disjunction P v Q.

Truth table : The statement P v Q has the truth value F only when

both P and Q have the truth value F, P v Q is true if either P is true

or Q is true (or both Pand Q are true). Truth table for disjunction :

P Q PvQ
T T T
T F T
F T T
F F F
Table 4.3
/'
y A
s
CHECK YOUR PROGRESS

Q.3. Write the following statements in symbolic form :

vii)

vii)

Pavan is rich and Raghav is not happy.

Pavan is not rich and Raghav is happy.

Naveen is poor but happy.

Naveen is rich or unhappy

Naveen and Amal are both smart .

It is not true that Naveen and Amal are both smart
Naveen is poor or he is both rich and unhappy

Naveen is neither rich nor happy.
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lllustrative Examples : Write the component statements of the
following compound statements and check whether the compound
statement is true or false.
i) 50 is a multiple of both 2and 5.
ii) All living things have two legs and two eyes .
iii) Mumbai is the capital of Gujrat or Maharashtra.
iv) ﬁ is a rational number or an irrational number.
v) Arectangle is a quadrilatateral or a 5 sided polygon.
Solution :
i) The component statements of the given statement are
P : 50 is multiple of 2
Q : 50 is multiple of 5
We observe that both P and Q are true statements.
Therefore, the compound statement P A Q is true.
ii) The component statements of the given statement are
P : All living things have two legs.
Q : All living things have two eyes.‘/i
We find that both P and Q are false statements. Therefore,
the compound statement P A Q is false.
iii) The components statements of the given statement are
P : Mumbai is the capital of Guijrat.
Q : Mumbai is the capital of Maharashtra.
We find that P is false and Q is true. Therefore, the compound
statement P v Q is true.
iv) The component statements are
P : is a rational number.
Q : is anirrational number.
Clearly P is false and Q is true. Therefore, the compound
statement P v Q is true.
v) The component statement are
P : A rectangle is a quadrilateral.
Q : Arectangle is a 5 sided polygon.
We observe that P is true and Q is false. Therefore, the

compound statement P v Q is true.
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N

CHECK YOUR PROGRESS

Q.4. Write the component statements of the following compound

statements and find true values of the compound statements.

Delhiis in Indiaand 2 + 2 = 4.
Delhiis in England and 2 + 2 = 4.
DelhiisinIndiaand2+2=5.

iv) Delhiis in England and 2 + 2 = 5.
v) Square of an integer is positive or negative.

vi) The sky is blue and the grass is green .

vii) The earth is round or the sun is cold.

viil) All rational numbers are real and all real numbers are

complex.

ix) 25 is a multiple of 5 and 8.

x) 125 is a multiple of 7or 8.
4.4.4 Conditional Statements

If P and Q are any two statements, then the statement “if P,

then Q”, is called a conditional statement. It is denoted by P—Q.

Example : Let P : Amulya works hard.

Q : Amulya will pass the examination.

Then P—Q : If Amulya works hard, then he will pass the

examination.

The statement P is called the antecedent and Q is called

the consequent in P—Q. The sign is called the sign of implication.

i)

The conditional statement P—Q can also be read as :
P only if Q i)y QIfP

iii) Q provided that P iv) P is sufficient for Q

v) Q is necessary conditions for P vi) P implies Q

vii)

Q is implied by P.
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Truth table : If the anticedent P is true and the consequent Q is
false, then the conditional statement P—Q is false, otherwise it is

true as given in the following table.

P Q P-Q

T T T

T F F

F T T

F F T
Table 4.4

lllustrative Examples :
1. Write each of the following statements in the form “If-then”
i) You get job implies that your credentials are good.
i) Aquadrilateral is a parallelogram if its diagonals bisect each
other.
i) To get A+ in the class, it is necessary that you do all the
excercises of the book.
Solution :
1. i) The given statement can be written as “If you get a job,
then your credentials are good.”
i) The given statement can be written as-
“If the diagonal of a quadrilateral bisect each other, then it
is a parallelogram”.
iii) The given statement can be written as
“If you are to get A+ in the class, then you are to do all the
exercises of the book”.
2. Write the following conditional statements in symbolic form and
hence, find truth values.
i) If2+2=4,then Guwahati is in Assam
i) If2+ 2 =4, then Guwahati is in Bihar
i) if 2+ 2 =5, then Guwahati is in Assam
iv) If 2+ 2 =5, then Guwahati is in Bihar
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Solution:Let P:2+2=4
Q : Guwahati is in Assam
R:2+2=5
S : Guwahati is in Bihar
Then i) The given statement is P—>Q
As P and Q have truth values T each, so P—Q has truth
value T, i.e., the given conditional statement is true.

i) The given statement is P—S

P S P—S

T F F

So, the given statement is false.

iii) The given statement is R—>Q

R Q R—Q

F T T

So, the given statements is true.

iv) The given statement is R—»S

R S R—>S

F F T

So, the given statement is true.

[ A

CHECK YOUR PROGRESS

Q.5. Write down the truth value of each of the following implication.
i) If3+2=7,then Paris is the capital of india.
i) f3+4=7,then3>7
i) 1f4>5,then5<86.
iv) If7>3,then6 <14
v) If7>3,then14>09.
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4.4.5 Biconditional Statements

and only if Q' is called a biconditional statement which is denoted

If P and Q are any two statements , then the statement ‘P if

by P~Q. ‘P if and only if Q is also abbreviated as “P iff Q”.

the same meaning as ‘if P, then Q and if Q, then P’. So the

biconditional P<>Q is the conjunction of the conditionals P—Q and

The biconditional ‘P if and only if Q' is regarded as having

Q-Pi.e., (P>Q) A (Q—>P)is same as P<Q.

To find the truth table for P<>Q, we first find the truth table
for (P—Q) A (Q—P):

P Q P—Q Q-P [ (P->Q)A(Q—P)
T T T T T
T F F T F
F T T F F
F F T T T
Table 4.5

Hence, the truth table for the biconditional P<Q is :

P Q P-Q

T T T

T F F

F T F

F F T
Table 4.6

Thus, the biconditional P—Q is true only when both P, Q

have identical truth values, otherwise it is false.

Examples of Biconditional statement :

1. Atriangle is equilateral if and only if it is equiangular.

2. 8>4ifand only if 8 — 4 is positive.
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NOTE

The statement P<>Q

can also be read as

a) Qifand only if P

b) P implies Q and Q
implies P

c) P is necessary and
sufficient condition for
Q

d) Q is necessary and
sufficient condition for
P

3. 2+2=4ifandonly if it is raining.
4. Two lines are parallel if and only if they have the same slope.
lllustrative Examples : Write the truth value of each of the following
biconditional statements.
i) 4>2ifandonlyif0<4-2.
i) 3<2ifandonlyif2<1.
i) 3+5>7ifandonlyif4 + 6 < 10.
iv) 2+ 5 =7 if and only if Guwahati is in Assam.
Solution: i) Let P:4>2
Q:0<4-2
Then, the given statement is P<~Q.
Clearly, P is true and Q is true and therefore, P<>Q is true.
Hence, the given statement is true, and its truth value is T.
i) Let P:3<2
Q:2<1
Then, the given statement is P<Q.
Clearly, P is false and Q is false and therefore, P<>Q is
true. Hence, the given statement is true, and its truth value is T.
i) Let P:3+5>7
Q:4+6<10
Then, the given statement is P<~Q
Clearly, Pis true and Q is false and therefore, P<~>Q is false.
Hence, the given statement is false and therefore, its truth value is F.
iv) Let P:2+5=7
Q : Guwahati is in Assam
Then, the given statement is P<>Q. As P is false, Q is true,

the given statement is false.

/'

Q.6. Write down the truth value of each of the following :

CHECK YOUR PROGRESS

i) 3+5=8ifandonlyif4+3=7.

i) 4isevenifandonlyif1isprime.
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ii) 6isodd ifand only if 2 is odd.

iv) 2+3=5ifandonlyif 3> 5.

v) 4+3=8ifandonlyif 5+ 4 =10.
vi) 2<3ifandonlyif 3 <4.

4.5

CONVERSE, INVERSE AND CONTRA-POSITIVE
OF A CONDITIONAL STATEMENT

The converse, inverse and contrapositive statements of a conditional

statement P — Q are defined as follows :

ii)

Implication P->Q

i) Converse QP
i) Inverse ~P > ~Q
iii) Contrapositive ~Q > ~P

lllustrative Examples :

. Write down (i) the converse (ii) the inverse and (iii) the contrapositive

of the following statement :
If a quadrilateral ABCD is a square, then all the sides of quadrilateral
ABCD are equal.
Solution : Let P : Quadrilateral ABCD is a square

Q : Sides of the quadrilateral ABCD are equal. Then

the given statementis P - Q

The converse is Q — P, i.e.,if all the sides of a quadrilateral ABCD
are equal, then quadrilateral ABCD is a square.
The inverse is ~P — ~Q, i.e., if a quadrilateral ABCD is not a square,
then all the sides of quad. ABCD are not equal.
The contrapositive is ~Q — ~P, i.e., if all the sides of a quadrilateral

ABCD are not equal, then quadrilateral ABCD is not a square.
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Y

A\

CHECK YOUR PROGRESS

Q.7. Write down (i) the converse (ii) the inverse and (iii) the
contrapositive of the following statements:
i) If a triangle is equilateral, it is isosceles.
ii) If x is prime number, then x is odd.
i) If two lines are parallel,then they donot intersect in the
same plane
iv) If a number is divisible by 9, then it is divisible by 3.

v) If a triangle is equilateral, then it is equiangular.

EXCERCISE

)

1. Find out which of the followig sentences are statements and
which are not. Justify your answer.
i) Every set is a finite set.
ii) Are all circles round?
i) All triangles have three sides.
iv) Is the earth round?
v) Go!
2. Write the negation of the following statements:
i) New Delhi is a city.
i) The number 2 is greater than 7.
iii) The sumof2and5is 9.
3. Find the component statements of the following and express it
in symbolic form :
i) All integers are positive or negative.
ii) All primes are even or odd.
ii) 0 is a positive number or a negative number.

iv) 24 is a multiple of 2, 4 and 8.

v) Ois less than every positive integer and every negative integer.
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4. Write the components statements of each of the following
statements and express if in symbolic form:
i) If a natural number is odd, then its square is also odd.
i) If x =4, then x? =16.
i) If ABCD is a parallelogram, then AB = CD.
iv) If a number is divisible by 9, then it is divisible by 3.
v) If a rectangle is a square, then all its four sides are equal.
5. Write down (i) the converse, (ii) the opposite and (iii) the
contrapositive of the implications:
i) If Mohan is a poet, then he is poor.
ii) If she works, she will earn money.
i) If it snows, then they donot drive the car.
iv) If x is less than zero, then x is not positive.
v) Ifitis hot outside, then you feel thirsty.
6. Using truth table, find truth values of the following statements:
i) Itis false that two plus two equals four.
i) 2+2=4and4+4=9
i) 2+2=40r4+4=9
iv) If2+2=4,then4+4=9
v) 4+4=9ifandonlyif8+8 =18
7. Let P:Sheistall
Q : She is beautiful
Write the following statements in sentences:
i) PAQ i) PA~Q i) ~PA~Q
v) ~Pv~Q) v) P->(~Q) (vi) ~(~P v ~Q)

i 4« 4.6 LET US SUM UP
TN

L

® |ogic is concerned with all kinds of reasoning, whether they are
legal arguments or mathematical proofs or conclusions in a scientific
theory based upon a set of hypotheses.

® Sentences are usually classified as declarative, exclamatory,

interrogative and imperative. In our study of logic, we will confine
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ourselves to the statements which are declarative sentences only
and which are either true or false, but not both. A primary statement
is a declarative sentence which cannot be further broken down or
analyzed into simpler sentences.

New statements can be formed from primary statements through
the use of sentential connectives.The resulting statements are called
compound statements.

The sentential connectives are also called logical connectives. These
connectives are: negation, AND (conjunction), OR (disjunction), IF—
THEN (conditional), IF AND ONLY IF (Bi-conditional), the symbols
used are respectively.

Truth tables have already been introduced in the definitions of the
connectives Our basic concern is to determine the truth value of a
statement formula for each possible combination of the truth values
of the component statements. A table showing all such truth values
is called the truth table of the formula. we constructed the truth
table for~P, P v Q, P A Q, P - Q and P <« Q.Observe that if the
truth values of the components are known,then the truth value of
the resulting statement can be readily determined from the truth
table by reading along the row which corresponds to the correct
truth values of the component statements.

The statement P is called the antecedent and Q is called the
consequent in P — Q.

If P and Q are two statements , then the converse of the implication
“if P, then Q" is “if Q, then P”.

The inverse of the implication “if P, then Q” is “if ~P, then ~Q”.

The contrapositive of the implication “if P, then Q” is “if ~Q, then ~P”.

A[ 4.7 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No. 1: Statement: i), iii), iv), vi), vii), viii) & x).

Ans.to Q. No.2: i) Bangalore is not the capital of Karnataka.

i) The earth is not round.
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ii)
ii)

iv)

Ans.to Q. No.3: i)

vi)

vii)

viii)
Ans.to Q. No.4: i)

ii)

Vi)

The sun is not cold.

No even integer is prime.

There is at least one rectangle whose both

diagonals do not have the same length.

P A ~Q, where P:

Q : Raghav is happy

~PAQ

~R A H, where R:
H:

Rv~H

P A Q, where P:
Q

~P A Q)

~R v (R~H), where R:
R:

~R A ~H

P : Delhiis in india

Q:2+2=4

Pavan is rich

Naveen is rich

Naveen is happy

Naveen is smart

: Amal is smart

Naveen is rich

Naveen is happy

The compound statement is true

P : Delhiis in England
Q: 2+2=4

The compound statement is false.

P : Delhi is in india
Q:2+2=5

The compound statement is false

P : Delhi is in England
Q:2+2=5

The compound statement is false

P : Square of an integer is positive

Q: Square of an integer is negative

The compound statement is true.

P : The sky is blue

Q : The grass is green

The compound statement is true.
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vii) P : The earth is round
Q : The sun is cold
The compound statement is true.
viii) P : All rational numbers are real
Q : All real numbers are complex.
The compound statement is true.
ix) P :25is a multiple of 5
Q : 25 is a multiple of 8
The compound statement is false.
x) P : 125 is a multiple of 7
Q : 125 is a multiple of 8

The compound statement is false.

Ans. to Q. No. 5: i) True, ii) False, iii) True, iv) False, v) True

Ans. to Q. No. 6 : i) True, ii) False, iii) True, iv) False, v) True, vi) True.
Ans.to Q. No. 7 :

)

ii)

converse : If a triangle is isosceles, then it is equilateral.

inverse : If a triangle is not equilateral, then it is not isosceles.
contrapositive : If a triangle is not isosceles, then it is not equilateral.
converse : If x is odd, then x is a prime.

inverse : If x is not prime, then ix s not odd.

contrapositive : If x is not odd, then x is not prime.

converse : If two lines donot intersect in the same plane, then the
lines are parallel.

inverse : If two lines are not parallel, then they intersect in the same
plane.

contrapositive : If two lines intersect in the same plane, then the

lines are not parallel.

converse : If a number is divisible by 3, then it is divisible by 9.
inverse : If a number is not divisible by 9, then itis not divisible by 3.
contrapositive : If a number is not divisible by 3, then itis not divisible
by 9.

converse : If atriangle is equiangular, then it is equilateral.

inverse: If a triangle is not equilateral, then it is not equiangular.

contrapositive : If a triangle is not equiangular, then it is not equilateral.
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. 4.8 FURTHER READINGS

1. Discrete Mathematical Structures with Application to Computer
Science, J. P Tremblay & R. Manohar.
2. Discrete Structures and Graph Theory, G. S. S. Bhishma Rao.

& | 2.9 MODEL QUESTIONS

Q.1. Find out which of the following sentences are statements and which
are not. Justify your answer.
i) The real number x is less than 2.
ii) All real numbers are complex numbers.
i) Listen to me, Ravi !
Q.2. Find the component statements of the following and check
whether they are true or not:
i) The sky is blue and the grass is green.
i) The earth is round or the sun is cold.
iii) Allrational numbers are real and all real numbers are complex
iv) 25 is a multiple of 5 and 8.
Q.3. Write the component statements of each of the following
statements. Also, check whether the statements are true or not.
i) Sets A and B are equal if and only if (A =B and B c A).
i) lal<2ifandonlyif (a>-2anda<2)
i) AABC is isosceles if and only if /B = ZC.
iv) 7 <5if and only if 7 is not a prime number.
v) ABC is a triangle if and only if AB + BC > AC.
Q.4. Write down (i) the converse, (ii) the opposite and (iii) the
contrapositive of the implications :
i) If you live in Delhi, then you have winter cloths.
ii) If a quadrilateral is a parallelogram, then its diagonal bisect

each other.
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iii) If you access the website, then you pay a subscription fee.
iv) If you log on to the server, then you must have a passport.
v) If all the four sides of a rectangle are equal, then the rectangle
is a square.
Q.5. If Pis true and Q is false, then find truth values of
i)y PA(~Q), i) ~PvQ, i) ~P — Q,
iv) P> (~Q), v) ~(P—Q), iv) P Q

86 Discrete Mathematics



UNIT 5: TAUTOLOGY AND CONTRADICTION

UNIT STRUCTURE

5.1 Learning Objectives

5.2 Introduction

5.3 Statement Formula or Proposition
5.4 Tautology

5.5 Contradiction

5.6 Logical Equivalence

5.7 Equivalent Formulas

5.8 Tautological Implications

5.9 Logical Validity of Arguments
5.10 Let Us Sum Up

5.11 Answers to Check Your Progress
5.12 Further Readings

5.13 Model Questions

5.1 LEARNING OBJECTIVES

After going through this unit, you will be able to

® define statement formulas or propositions

® define tautology and contradiction

® know about logical equivalence of two different statement
formulas

® know about some important equivalence formulas

® |earn about theory of inference.

5.2 INTRODUCTION

The notion of a statement has already been introduced in the
previous unit. In this unit, we define statement formula and well-formed
formula. Also we define tautology and contradiction of statement formulas
and discuss equivalence of two statement formulas. Besides the theory of

inference of statements will also be included on our discussion.
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5.3 STATEMENT FORMULA OR PROPOSITION

Statements which donot contain any connective are called simple
or primary or atomic statements. On the other hand, the statements which
contain one or more primary statements and at least one connective are
called composite or compound statements.

For example, let P and Q be any two simple statements. some of
the compound statements formed by P and Q are—

~P,PvQ, (PvQ)A(~P), Pv(~P), (P~Q)AP.

The above compound statements are called statement formulas or
prepositions derived from statement variables P and Q. Therefore P and
Q are called components of the statement formulas. An arbitrary statement
formula will be denoted by A(P,Q,...) or B(P,Q,...), etc.

A statement formula alone has no truth value. It has truth value
only when the statement variables in the formula are replaced by definite
statements and it depends on the truth values of the statements used in
replacing the variables.

The truth table of a statement formula (Proposition) : Truth table
has already been introduced in the definitions of the connectives. In general,
if there are ‘n’ distinct components in a statement formula . We need to
consider 2" possible combinations of truth values in order to obtain the
truth table.

For example, if any statement formula has two component
statements namely P and Q, then 22 possible combinations of truth values
must be considered.

lllustrative Examples :

1. Construct the truth table for ~P A (~Q).

Solution : Truth Table :

P Q ~Q | PA(~Q)
T T F F
T F T T
F T F F
F F T F
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2. Construct the truth table for ~P v ~Q.
Solution : Truth Table :

P Q ~P ~Q | ~Pv~Q
T T F F F
T F F T T
F T T F T
F F T T T

3. Construct the truth table for P - (Q - R).

Solution : P, Q and R are the three statement variables that occur
in this formula P — (Q — R). There are 23 = 8 different sets of truth value
assignments for the variables P, Q and R.

The following table is the truth table for P —» (Q —» R).

P Q R Q>R |P>(Q—>R)
T T
T T F F F
T F T T T
T F F T T
F T T T T
F T F T T
F F T T T
F F F T T
4
Z XA
CHECK YOUR PROGRESS

Q.1. Construct the truth tables for the following formulas
a) ~(~PA~Q)
b) ~-PvQ)A(~QVvP)
c) PAQ)PvVQ)

5.4 TAUTOLOGY

We have already defined truth table of a statement formula. In

general, the final column of a given formula contains both T and F. There
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are some formulas whose truth values are always T or always F regardless
of the truth value assignments to the variables. This situation occurs
because of the special construction of these formulas.

Definition : A statement formula which is true regardless of the truth
values of the statements which replace the variables in it is called a
universally valid formula or a tautology or a logical truth.

A straight forward method to determine whether a given formula is
a tautology is to constuct its truth table. In the table, if the column below
the statement formula contains T only, then it is a tautology. The conjunction
of two tautologies is also a tautology. Let us denote by A and B two statement
formulas which are tautologies.If we assign any truth values of the variables
of A and B, then the truth values of both A and B will be T. Thus the truth
value of A A B will be T, so that A A B will be a tutology.

lllustrative Examples :

1. Verify whether P v (~P) is a tautology.

Solution :
P ~P P v (~P)
T F T
F T T
As the entries in the last column are T, the given formula is a
tautology.
2. Verify whether (P v Q)P is a tautology.
Solution :
P Q PvQl|PvQ)—>P
T T T T
T F T T
F T T F
F F F T

Since the entries in the last column of the truth table (PQ) P contain
one false, the formula is not a tautology.
3. Verify whether (P A (P <> Q)) > Q is a tautology.

Solution :
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P Q PQ | PAPQ) | (P A (PQ))—Q
T T T T T
T F F F T
F T F F T
F F T F T

As the entries in the last column are T, the given formula is a tautology.

| 1A

.
, :’R ' / CHECK YOUR PROGRESS

N\

@)

Prove that the following are tautologies (using truth tables):
a) ~PvQv(EPAQVP

b) (P—> Q)< (~PVv Q)

c) Qv ((P~Q)v (~PA~Q)

5.5 CONTRADICTION

Definition : A statement formula which is false regardless of the
truth values of the statements which replace the variables in it is called a
contradiction.

i.e, if each entry in the final column of the truth table of a statement
formula is F only then it is called as contradiction.

Clearly, the negation of a contradiction is a tautology and vice-
versa. We may call a statement formula which is a contradiction as
identically false.

lllustrative Examples :

1. Verify that P A (~P) is a contradiction.

Solution :
P ~P P A (~P)
T F
F T F

Since the last column has F only, the statement formula is a

contradiction.
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2. Verify the statement (P A Q) A ~(P v Q).

Solution :
P Q PAQ|[PvQ|~PvQ) |[(PAQ)A~PVQ)
T T T T F F
T F F T F F
F T F T F F
F F F F T F

Since the truth value of (P A Q) A ~(P v Q) is F, for all values of P
and Q, the proposition is a contradiction.
3. Prove that, if A(p, q, -) is a tautology, then ~A(p, q, -) is a
contradiction and conversely.
Solution : Since a tautology is always true, the negation of a

tautology is always false i.e is a contradiction and vice-versa.

5.6 LOGICAL EQUIVALENCE

Two statement formulas A(P, Q, ...) and B(P, Q, ...) are said to be
logically equivalent or simply equivalent if they have identical truth tables.
In other words, corresponding to identical truth values of P, Q, ... the truth
values of A & B must be same. If A and B are equivalent, we shall write AB
orA< B.

lllustrative Examples :

1. Prove thatP v Q < ~(~P A ~Q).

Solution :

P Q [PvQ | ~P | ~Q [ ~PA~Q | ~(~P A ~Q)
T T T F F T

T F T F T F T

F T T T F F T

F F F T T T F

The truth table shows that P v Q and ~(~P A ~Q) have identical
truth value column. So, P v Q < ~(~P A ~Q).
2. ProvethatP - Q < (~P v Q).

Solution :
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P | aQ [Pva|~P [~PvaQ
T | T T | F T
T | F F | F F
F | T T |7 T
F | F T |7 T

Here, columns of P - Q and (~P v Q) are identical.
Hence, P > Q < (~P v Q).

[ A
EN ol
CHECK YOUR PROGRESS
Q.3. Show the following equivalences using truth table method:

a) P>(QvR) e (P->Q)v (P—>R)

b) ~P->Q)=PA~Q
PoQeP->QAQ—P)
~PQ)—> (~PVv (~Pv Q)< (~P v Q)
e) PvQ)—> (~PA(~PAQ)) < (~P A~Q)
f) P>Qe~Q—>-~P

o O

)
)
)
)

5.7 EQUIVALENT FORMULAS

Using respective truth tables, we can prove the following equivalence:

a) ldempotent Laws :i) PVvP <P i) PAP<P

b) Associative Laws :

)

PvQ)VR<PV(QVR) i) (PAQAR<PA(QAR)

c) Commutative Laws :

i)

PvQe QVvP i) PAQe QAP

d) Distributive Laws :

i)
i)

PviQAR) e (PvQ)A(PVR)
PAQVR)(PAQ)V(PAR)

e) Absorption Laws :

)

PviPAQ)o P iy PA(PvQ)eP

f) Demorgan’s Laws:

)

~PvQ)e~PA~Q i) ~PAQ)e~PVv~Q
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Some other important equivalence formulas:

i) PVvFoP i) PAT<P
i) PvToT iv) PAF<F
v) Pv~P<T vii PA~P<F
vii) ~~P =P vii) ~T=F ix) ~F=T

Check yourself the above formulas as an exercise by truth table
technique. Here, T and F respectively stands true statement and false
statement.

Replacement Process : Consider the formula A: P - (Q —» R).
The formula Q — R is a part of the formula. If we replace Q — R by an
equivalent formula ~Q v R in A, we get another formula B : P —» (~Q v R).
we can easily verify that the formulas A and B are equivalent to each other.

This process of obtaining B from A is known as the replacement
process. Using the laws stated in 5.7, we can also establish equivalence
of statement formulas without using truth tables.

lllustrative Examples :

1. Provethat,P > (Q—>R) P> (~QVR) (PAQ)—>R.

Solution : We know that Q > R< ~Q v R

[see illustrative ex. 2 of 5.6 ]

Replacing Q - Rby ~Q v R, we getP - (~Q v R),

which is equivalentto ~P v (~Q v R) by the same rule.

Now,~PVv (~QVR)< (~PVv~Q) VR ~PAQ)VR< (PAQ)
— R, by associativity of v, Demorgan’s law and the previously used rule.

2. Provethat, P> QAR—->Q) < (PAR)—>Q

Solution: (P> Q) A(R—>Q)

S (~PvQQ) ARV Q)

< (~PA~R) v Q, [Distributive law]
<~PvVvR)Q [Distributive law]
< (PVvR)—>Q

3. Provethat, ~PA (~QAR))V(QAR)V(PAR)<R.
Solution: (~-PA(~QAR))Vv(QAR)V(PAR)
S ((~PA~Q)AR) VvV ((QVP)AR)

(Associative Law & distributive Law)

[e7} Discrete Mathematics



Tautology and Contradiction

Unit 5

< (~(PvQ)AR) Vv ((QvP)AR) (Demorgan’s Laws)
SEPvQVEPVQ)AR (Distributive Law)
<TAR Since~SvS<eT

<R asTAR<R

4

=
/
v

CHECK YOUR PROGRESS

Q.4. Prove that:
a) (P>oQA(R->Q < (PVR)>Q
b) P> (Q—>P)e~P—-> ((P—->Q)
c) ~PoQaoePvQa~PAQ)
d ~PcQ) e (PA~Q) v (~PAQ)
Q.5. Show that P is equivalent to the following formulas :
i)y ~~P i) PAP i) PvP
iv) Pv(PAQ) v) PA(PVQ)
vi) PAQ)V(PA~Q) vi) (PvQ)A(PvVv~Q)

5.8 TAUTOLOGICAL OR LOGICAL IMPLICATIONS

Definition : A statement A is said to tautologically or logically imply
a statement B if and only if AB is a tautology. In this case,we write AB,

read as “A tautologically implies B” or “A logically implies B”.

/% I—? LET US KNOW
e

i) = is not a connective, A = B is not a statement formula.
)

i) Thus A= B states that A — B is a tautology or A logically implies

B.

i) Clearly, A= B guarantees that B has the truth value T whenever
A has the truth value T.

iv) By constructing the truth tables of A and B, we can determine

whether A = B.
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v)

vi)

vii)

In order to show any tautologically implications, it is sufficient to
show that an assignment of the truth value T to the antecedent
of the corresponding conditional leads to the truth value T for the
consequent. This procedure ensures that the conditional
becomes a tautology, thereby proving the tautological or logical
implication.

Another method to show A= B is to assume that the consequent
B has the value F and show that this assumption leads to A’s
having the value F. Then A — B must have the value T.

A< BifandonlyifA= B and B = Ai.e, if each of two formulas
A and B tautologically or logically implies the other, then A and

B are equivalent.

lllustrative Examples :

Establish the following logical implication using the truth table :
P->Q->R)=(P—->Q—>(P—->R)

Solution : We prove this by using the truth table for
P->Q->R)»P—->Q-—>(P—->R)

P->Q|Q->R|P

Py

P>Q->R)|(P>Q)—>(P—>R)

T

m|m| MM |4 ||| O

MMM [T [ [4]O
M| |4 T[4
||| |Tm|4]]

N
T
F
T
T
T
T
T
T

—A =A== ]|n [
A=A |[n|[a|=|4 ]|
||| |4 |m

As the columns of P — (Q - R) and (P — Q) — (P — R) are identical,

so (P> (Q > R)) > (P > Q) —» (P - R) is a tautology.

2.

Therefore (P > (Q > R)) = (P > Q) > (P > R).
Show the following implication without constructing the truth tables:
~QA(P->Q)=~P
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Solution : To prove that ~Q A (P —» Q) = ~P, it is enough to show
that the assumption that ~Q A (P — Q) having the truth value T guarantees
the truth value T for ~P.

Now assume that ~Q A (P — Q) has the truth value T. Then both
~Q and P —» Q have the truth value T. Since ~Q has truth value T, Q has
the truth value F. As Q has the truth value F and P — Q has the truth value
T, it follows that the truth value of P is F and the truth value of ~P is T.

Thus we have prove that: ~Q A (P > Q) = ~P

Some Important Logical Implications :

1. PAQ=P 2. PAQ=Q

3. P=>PvQ 4. ~P=>P->Q

6. Q=P->Q 5. ~P->Q)=P
7. ~P->Q)=~Q 8. PA(P->Q)=Q

1. P->-QA(Q->R)=P->R
12. PvQAP->RA(Q—>R)=R

Check yourself the above logical implications by using the truth table.

P4

CHECK YOUR PROGRESS

Q.6. Show the following logical implications using the truth table:
a) Q=>P->R b) PQ=P->Q
Q.7. Show the following logical implications without constructing
the truth tables :
a) PvQA(~P)=Q
b) P>Q=P->(PAQ)
c) P>Q—->Q=PvQ
d (Pv~P)-»> Q) —>((Pv~P)>R)=(Q—>R)
e) Q> PA~P) > R>(PA~P)=(R—-Q)

5.10 LOGICAL VALIDITY OF ARGUMENTS

One of the primary objectives of logic is to provide principles of

reasoning for determining the validity of a conclusion subject to a given set
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NOTE
IfA A, ....A |—Aisa
valid argument, it is said
that the conclusion C
follows logically from the
set of premises
A A, ... A}

of finite number of propositions, called premises. In other words, logic
provides us the principles of testing the validity of an argument. In this section
we shall discuss validity of an argument, defined below, using truth tables.

Argument: LetA A, ....A_ be afinite number of statement formulas
or propositions and A be another statement formula or proposition. Then the
statement “A,, A,,....An yields A" denoted by A , A, ....A |—Ais called an
argument. A ,A,, ....A_ are called premises and Ais called the conclusion of
the argument.

Example of Argument : Let us consider the following sentences :

“If a man is a bachelor, then he is unhappy.
If a man is unhappy, then he dies young.
Therefore, bachelors die young.”

These three sentences form an argument, where the first two
sentences are premises and the last sentence is the conclusion. To
symbolise this argument, let us take

P : He is a bachelor
Q : He is unhappy
R : He dies young

Then the premises are A, : P — Q, A,: Q — R and the conclusion is
A:P — R. In symbol, the given argument can be written as A, A, —A.

Validity of an Argument : An argumentA,,A,, ..., A, F—=A.......... (i)
is called a valid argument if the conclusion A is true whenever all the
premises A,, A,, ..., A are simultaneously true.

Now A1, A2, An are simultaneously true if and only if A1 A A2 A ...
A A is true. In other words, the argument (i) is valid if and only if Ais true
whenever

A, ANA, AL AA s trueie.
(A, AA, A . AA)) — Als a tautology

or A, AAA L AA A

If an argument is not valid, it is called a Fallacy.

Truth table as an effective technique for testing validity of

arguments : Let P, P, ..., P_ be the primary statements occuring in one
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or more of the premises A, A, ..., A and the conclusion A of an argument
A.A, ..,AHA.

To check the validity of the argument, we construct the truth table
with columns forA1, A, ...,A andA. We find the rows where all the premises
A, A, ..., A have truth value T, simultaneously. If for every such row, A
also has the truth value T, then we can easily show that (A, AA,A ... AA)
— A is a tautology, and hence, the argument is a valid argument.
Alternatively, we can check those rows in which A has the truth value F. If in
each of these roows, at least one of A, A,, ..., A has the truth value F, then

again (A, AA, A ... AA ) = Awill be a tautology, and so, the argument will be

valid.
lllustrative Examples : Examine validity of the arguments given
below :
i) P->Q, Q->RIP->R
i)y P—->~Q, Q}—~P
i) P—-Q, R>~Q—R->~P
iv) P—>~Q, ~R->~Q}—P->~R

[Note that in the above arguments, the statement formulas on the
left of the symbol ‘" are the premises A, A, ... etc. and that on the right
is the conclusion A.]

Solution : i) Truth Table :

P Q R P->Q|Q->R|P->R| Row
T T T T T 1 ——

T T F T F F 2 NOTE

T = T F T T 3 The valid argument
P—Q, Q>R |—P—-Ris

T F F F T F 4 .
called law of syllogism,

F T T T T T S where P, Q, R any three

F T F T F T 6 variable statements.

F F T T T 7

F F F T T T 8

From the table, it is seen that both the premises are true in rows 1,
5, 7, 8 and the conclusion is also true in those rows. Hence, the given

argument is valid.
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Alternatively, the conclusion has the truth value F in rows 2 and 4
and in each of these two rows, at least one premise has the truth value F.
So, the argument is valid.
i) Truth Table :

P|l al|-~|Ps~a]-~P
T | T | F F F
T | F | T T F
F | T | F T T
F | F [T T T

The table shows that both the premises have the truth value T only
in row— 3 and the conclusion also has the truth value T in that row. So, the
argument is valid.

ii) Truth table :

Pl QR ~P | ~Q| P>Q| R>~Q|R—->~P| Row
T| T | T F F T F F 1
T| T|F F F T T T 2
T| F | T F T F T F 3
T| F | F F T F T T 4
F| T | T T F T F T 5
F| T | F T F T T T 6
F| F | T T T T T T 7
F| F|F T T T T T 8

The premises are simultaneously true in rows — 2, 6, 7, & 8 and the
conclusion is also true in these rows. Hence the given argument is valid.
iv) Truth Table :

Pl Q| R ~Q | R | P>~Q|~R->~Q| P>~R| Row
T| T | T F F F T F 1
T| T | F F T F F T 2
T| F | T T F T T T 3
T| F| F T T T T T 4
F| T| T F F T T T 5
F| T|F F T T F T 6
FI| F| T T F T T T 7
F| F|F T T T T T 8
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the conclusion have the truth value F. hence, the given argument is not

The third row shows that both the premises have truth value T, but

valid. Itis a fallacy.

[ A
7 "\ yA
. C Y ,

' CHECK YOUR PROGRESS

Q.8. Examine validity of the following arguments :

aPbP->QF-Q
b)P->QR->~Q}—R—>~P
c)P—->~Q,QF—~P
dP->~Q,~P->RI-Q->~R

Q.9. Determine validity of the following arguments :

a) Ifitrains, | will stay at home. It did not rain. Therefore, |
did not stay at home.

b) If it rains, | will stay at home. | did not stay at home.
Therefore, it did not rain.

c) If | study, then | will not fail in mathematics. If | do not
play cricket, then | will study. But | failed in mathematics.
Therefore, | must have played cricket.

d) If I work hard, then | will get a job. If | get a job, then | will
be happy. | will not be happy. Therefore, | will not work
hard.

EXERCISE

From the formulas given below indicate which are tautologies
or contradictions.

a) P> (PvQ) b) Pv~PAQ)

c) (FQAP)AQ) d PAP—->Q)—>Q

e) (r-P->Q)—» (Q—-P)) fy PAQeP

Show that the truth values of the following formulas is
independent of its components.

P->Q)«e (~-PvQ)
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3. Show the following logical implications constructing truth tables.

a) PAQ)=(P—-Q) b) ~P—>Q) =P

c) P> Q->R)=P->Q) —>(P—>R)

Show the following equivalences.

a) P>Q->P)es~P->(P—->Q)

b) ~PAQ)< ~Pv~Q

c) P>QAR—->Q<((PVR)>Q

d ~P<Q o PA~Q) Vv (~PAQ)

Show the following implications without constructing the truth
tables.

a) P>Q=P->(PAQ) b) P>Q) —>Q=PvAQ

i _L 5.10 LET US SUM UP

e |

® A statement formula is an expression which is a string consisting of

(capital letters with or without subscripts), parentheses and
connective symbols(v, A, —, <>, ~), which produces a statement
when the variables are replaced by statements.

A statement formula which is true regardless of the truth values of
the statements which replace the variables in it is called a universally
valid formula or a tautology or a logical truth.

A statement formula which is false regardless of the truth values of
the statements which replaces the variables in it a contradiction.
The statement formulas A and B are equivalent provided A <> B is
a tautology; and conversly, if A <> B is a tautology, then A and B are
equivalent. We shall represent the equivalence of Aand B by writing
“A < B” which is read as “A is equivalent to B.” “A < B” is also
denoted by ‘A=B’

A statement Ais said is to tautologically imply a statement B if and
only if A — B is a tautology. We shall denote this idea by A = B
which is read as “A logically implies B”.

For a given set of statement formulas A, A,, ..., A and A; the

statement“A ,A,, ..., A yields A" is called an argument. It is denoted
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byA, A, ....,A —A.ltisavalid argumentif (A AA,A...AA ) Aisa

177722
tautology.

® |f an argument is not valid, it is called a fallacy.

A{ 5.11 ANSWERS TO CHECK YOUR PROGRESS

Ans.to Q.No.1: a) The variable that occur in the formula are P and Q,
so we have to consider 4 possible combinations of truth values of

two statements P and Q.

P Q ~P | ~Q ~P A~Q ~(~P A ~Q)
T | T | F | F F T
T | F | F | T F T
F | T | T/|F F T
F Il F | T | T T F

b) The variable are P and Q, clearly there are rows in the truth

table of this formula.

P Q ~P | ~Q|~PvQ|~QVP|~PVvQ)A(~QVP)
T T F F T T T
T F F T F T F
F T T F T F F
F F T T T T T
c)
P Q PAQ| PvQ|[(PAQ)—>(PVvQ)
T T T T T
T F F T T
F T F T T
F F F F T
Ans.to Q. No.2: b)
P Q ~P ~PvQ | P>Q [(P>Q) e (-PVvQ)
T T F T T T
T F F T F T
F T T T T T
F F T F F T
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All the entries in the last column are T, the given formula is a

Ans. to Q. No. 3:

tautology.
Similarly, for (a) & (c) construct truth tables.
b)
P Q ~Q P-Q|~P—->Q)| PA~Q
T T F T F F
T F T F T T
F T F T F F
F F T T F F

As ~(P - Q) and (P A ~Q) have identical truth columns, so

~P->Q) < PA~Q.

f)

Ans.to Q. No. 4 :

P Q ~P | ~Q | P>Q [~Q>~P
T T F F T
T F F T F F
F T T F T T
F F T T T T
a) We knowthatP - Q< ~P v Q

Similarly, R > Qby ~R v Q

Now,(P->Q)A(R->Q) <= (~PvQ)A(~RVv Q)

Ans.to Q. No.5:
Ans. to Q. No. 6 :

< (~P A ~R) v Q (By distributive law)
< (~(P v R)) v Q (By De Morgan’s law)

< (PVvR)—> Q.

Similarly, you can prove (b), (¢) & (d) by same process.

a)
P Q P-Q|Q->((P—->Q)
T T T T
T F F T
F T T T
F | F T T

Since Q —» (P — Q) is a tautology, Therefore,Q = (P — Q).

Similarly, try to prove (b) by same process.

You can prove by truth table method.
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Ans.to Q.No.7: a) To prove that (P v Q) A (~P) = Q, it is enough to
show that the assumption that (P v Q) A (~P) has the truth value T
guarantees the truth value T for Q.

Now, assume that (P v Q) A (~P) has the truth value T. Then
both (P v Q) and ~P have the truth value T. Since ~P has truth
value T, so P has truth value F. It follows the truth value of Q is T.

Thus we prove that (P v Q) A (~P) = Q.

Similarly, try to prove (b), (c), (d) & (e) by same process.

Ans. to Q. No. 8 : a) Valid, b) Valid, c) Valid, d) Fallacy

Ans.to Q. No.9: a) Take R:ltrains

S : | stay at home

The argumentis R - S, ~R |— ~S

Constructing the truth table, we can show that it is a fallacy.
b) In symbols of (a), the argumentisR - S, ~S |—~R

It is a valid argument.

c) Take P :Istudy
Q : I fail in mathematics
R : | play cricket
Then the argumentis P - ~Q,~R > P, Q —R
It is a valid argument.
d) Take P :1work hard
Q : I will get a job
R : | will be happy
The argumentisP - ~Q,Q > R, ~R—~P

It is a valid argument.

5.12 FURTHER READINGS

1. Discrete Mathematical Structures with Application to Computer
Science by J. P. Tremblay & R. Manohar.
2. Discrete Structures and Graph Theory by G. S. S. Bhishma Rao.
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Y& 513 MODEL QUESTIONS

Q.1. Construct the truth table for each of the following:
) PAQ)—>(PvQ)
i) PAQ)—>~P
i) (P>Q) < (~PvQ)
Q.2. With the help of truth tables, prove the following :
) P->Q < (~PvQ)
i) (P—->Q)<(~Q—->~P)
i) PoQeP->QAQ—>P)
Q.3. Show that the truth values of the following formulas are
independent of their components .
a) PA(P—->Q)—Q
b) (P—> Q)< (~PVv Q)
c) (P>Q)A(Q—->R))>((P—->R)
d PoQ)« (PAQ)V(~PA~Q)
Q.4. Given the truth values of P and Q as T and those of Rand S as F,
find the truth values of the following:
a) ~PAQ)vV~R)Vv((Q«+ ~P)—> (Rv~S))
b) (P R)A(~Q—>S)
c) Pv(Q->(RA~P)) < (Qv~S)
Q.5. Examine validity of the following arguments :
a) P->Q~QF-P
b) P>~QR->QRI—~P
c) ~QQP->Q|—~P
d P>(Q->R),PAQ}IR
e) PP->Q,Q->RI-R.
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UNIT 6 : COUNTING PRINCIPLES

UNIT STRUCTURE

6.1 Learning Objectives

6.2 Introduction

6.3 Basic Counting Principles

6.4 Pigeonhole Principle

6.5 LetUs Sum Up

6.6 Answers to Check Your Progress
6.7 Further Readings

6.8 Model Questions

6.1 LEARNING OBJECTIVES

After going through this unit, you will be able to
® learn about basic counting principles

® describe Pigeonhole Principle and its applications.

6.2 INTRODUCTION

The study of arrangements of objects is an important part of discrete
mathematics. Techniques of counting are important both in Mathematics
and Computer Science, especially in probability theory and analysis of
algorithms. In this unit we will introduce you to the basics of Counting and

Pigeonhole principle.

6.3 BASIC COUNTING PRINCIPLES

The Rule of Sum : If a task can be performed in m ways, while
another task can be performed in n ways, and the two tasks cannot be
performed simultaneously, then performing either task can be accomplished
in m + n ways.

Set theoretical version of the rule of sum : If Aand B are disjoint
sets (A N B = ¢) then |A U B| = |A| + |B|, where |A| represent number of

elements in A, etc.
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More generally, if the sets A, A, ..., A are pairwise disjoint, then |A1
VA,UA UL UA [=AHIA+ AL+ .. +A |

lllustration Examples :

1. Ascholarship is available, and the student to receive this scholarship
must be chosen from the Mathematics, Computer Science, or the
Engineering Department. How many different choices are there for
this student scholarship if there are 38 qualified students from the
Mathematics Department, 45 qualified students from the Computer
Science Department and 27 qualified students from the Engineering
Department?

Solution : The procedure of choosing a student from the
Mathematics Department has 38 possible outcomes, the procedure of
choosing a student from the Computer Science Department has 45 possible
outcomes, and the procedure of choosing a student from the Engineering
Department has 27 possible outcomes. Therefore, there are 38 + 45 + 27
= 110 possible choices for the student to be awarded the scholarship.

2. If a student has to choose a project from one of the 5 lists and the
five lists contain 15, 20, 25, 10 and 12 possible projects respectively.
How many possible projects are there to choose from?

Solution : The student can choose a project from the 1st list in 15
ways, from the 2nd list by 20 ways and so on. Using sum rule, there are 15
+20+ 25+ 10 + 12 = 82 possible projects that can be chosen by a student.

3. In a class of 25 boys and 32 girls, find the number of ways of
selecting one student as class representative.

Solution : Out of 25 boys, class representative can be selected in
25 ways and out of 32 girls, the same can be selected in 32 ways. Therefore,
a class representative can be selected in 25 + 32 = 57 ways.

The Rule of Product : If a task can be performed in m ways and
another independent task can be performed in n ways, then the combination
of both tasks can be performed in mn ways.

Set theoretical version of the rule of product : Let A x B be the
cartesian product of sets A and B.

Then, |A x B| = |A] - |B|
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More generally, |A, x A, x - xA | =|A |- |A] - |A |

lllustration Examples :

1. A man has 10 shirts, 8 pairs of pants and 3 pairs of shoes. How

many different outfits, consisting of one shirt, one pair of pants

and one pair of shoes, are possible?

Solution : Choosing a shirt has 10 possible outcomes, choosing a

pair of pants has 8 possible outcomes, and choosing a pair of shoes has 3
possible outcomes. So the number of different ouffits is 10 x 8 x 3 = 240.
2. A student wishes to take a combination of 3 courses, one from
each of the three Arts departments. There are 4 Economics, 3

History and 2 Political Science courses on offer. How many possible

combinations are there?

Solution: The student has a choice of 4 courses in Economics and
he can take any one of these 4 courses. Similarly, he can take any one of
3 courses in History and 2 courses in Politcal Science. Hence, required

number of ways in which he can take a combination is 4 x 3 x 2 = 24.

3. How many different bits strings are there of length 5?

Solution : Each of the 5 bits can be chosen in 2 ways as each bit

is either 0 or 1. Therefore, by product rule, there are 2°= 32 different bit

strings of length 5.

7

P
.

/

A\

a

CHECK YOUR PROGRESS

Q.1.

Q.2.

Q.3.

If a student is getting admission in 5 different Engineering
Colleges and 4 different Medical Colleges, find the number
of ways of choosing one of the above colleges?

If A be the event of selecting a prime number less than 10
and B be the event of selecting an even number divisible
by 4 and less than 10, find the number of ways of happening
events A or B?

For a set of six objective type questions which are either
true or false, find the number of ways of answering all

question.
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NOTE
The Pigeonhole Principle
was first used by
Dirichlet in Number
Theory. The term
pigeonhole actually
refers to one of those
old-fashioned writing
desks with thin vertical
wooden partitions in
which to file letters.

Q.4. How many different license plates are available if each plate

contains a sequence of two letters followed by four digits

(and no sequence of letters are prohibitted).

6.4 PIGEONHOLE PRINCIPLE

Although it might look nothing much than common sense, the
Pigeonhole principle is very useful in various types of problems. It allows
us to sometimes draw quite unexpected conclusions in situations, when it
even seems that we do not seem to have enough information. The Pigeonhole
Principle is also known as Dirichlet Principle or Shoe Box Principle.

Pigeonhole principle states— If n + 1 or more objects are placed in
n boxes, then at least one box contains more than one object.

More generally we can say— If n pigeons are assigned to m pigeonholes
then at least one pigeonhole contains two or more pigeons (m<n)

Proof : Let m pigeons holes be numbered with the numbers 1
through m. Starting with the pigeon 1, each pigeon is assigned in order to
the pigeonholes as numbered before. Since m < n, i.e. the number of
pigeonholes is less than the number of pigeons, n — m pigeons are left
without being assigned a pigeonhole. Thus, at least one pigeonhole will
be assigned to a second pigeon.

lllustration Examples :

1. Inany given set of 13 people at least two of them have their birthday
during the same month.

Solution : Since 13 people can be thought of as the pigeons and
12 months of the year as the pigeonhole. Since 12 < 13, i.e. the number of
pigeonholes is less than the number of pigeons, by Pigeonhole Principle,
at least 2 of13 people have their birthday during the same month.

2. Let S be a set of eleven 2-digit numbers. Prove that S must have
two elements whose digits have the same difference.

Solution : We consider the set S = {10, 14, 19, 22, 26, 28, 49, 53,
70, 90, 93}. The digits of the numbers 28 and 93 have the same difference:
8 -2 =6, 9- 3 =6. The digits of a two-digit number can have 10 possible

differences (from 0 to 9). These possible differences can be considered as
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10 pigeonholes and 11 numbers can be considered as pigeons. Since 10<11,
by Pigeonhole principle in a list of 11 numbers there must be two with the
same difference.

3. Provethatif seven distinct numbers are selected from {1, 2, ..., 11},

then two of these numbers sum to 12.

Solution : Let the pigeons be the numbers selected. We define six
pigeonholes corresponding to the six sets: {1, 11}, {2, 10}, {3, 9}, {4, 8},
{5, 7}, {6}. When a number is selected, it gets placed into the pigeonhole
corresponding to the set that contains it. Since seven numbers are selected
and placed in six pigeonholes, some pigeonhole contains two numbers.
By the way the pigeonholes were defined, these two numbers sum to 12.

4. Prove that if 11 integers are selected from among {1, 2, ..., 20},

then the selection includes integer a and b such thata - b = 2.

Solution : Let the pigeons be the 11 integers selected. We define
10 pigeonholes corresponding to the sets {3, 1}, {4, 2}, {7, 5}, {8, 6}, {11, 9},
{12, 10}, {15, 13}, {16, 14}, {19, 17}, {20, 18}. Place each integer selected
into the pigeonhole corresponding to the set that contains it. Since 11
integers are selected and placed into 10 pigeonholes, some pigeonhole
contains two numbers. By the way the pigeonholes were defined, these
two integers differ by two.

If the number of pigeons is much larger than the number of
pigeonholes, the above stated pigeonhole principle can be restated to
give a stronger form

Extended Pigeonhole Principle : If n pigeons are assigned to m
pigeonholes, then one of the pigeonholes must contain at least | (n—1)/m
+ 1 pigeons.

Proof : Let us assume that none of the pigeonholes contain more
than [ (n—1)/m/ pigeons.

Then there are atmost m[(n—1)/mJ = n—1 pigeons. This contradicts
our assumption that there are n pigeons. Hence, one of the pigeonholes
must contain at least | (n—1)/m] + 1 pigeons.

lllustration Examples :

1. If you have 5 rabbits sitting in 2 boxes, then there must be 3 or
more rabbits in at least one of the boxes.
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1M



Unit 6

Counting Principles

Solution : Here boxes can be considered as pigeonholes and thus
m = 2 and each rabbit can be considered as pigeons, n = 5. By Pigeonhole
principle, [ (5-1)/2] + 1 = 3 i.e. there must be 3 or more rabbits in at least
one of the boxes.

2. What is the minimum number of students required in a class to be
sure that at least 5 will receive the same grade if there are 4 possible
grades A, B, C and D?

Solution : The minimum number of students needed to ensure
that at least 5 students receive the same grade is the smallest integer n
such that[ (n—1)/4]+ 1 = 5. This gives n = 17 which is the minimum number

of students needed to ensure that at least 5 students receive the same

grade.
L LA
Z N
g Q C ,
CHECK YOUR PROGRESS

Q.5. There are 3 men and 5 women in a party. Show that if these
people are lined up in a row, at least two women will next to
each other.

Q.6. Find the minimum number n of integers to be selected from
S={1,2,3, ..., ..., ..., 9} so that
a) the sum of two of the n integers is even,

b) the difference of two of the n integers is 5.

. %4 6.5LET US SUM UP
T4

® |f a task can be performed in m ways, while another task can be

performed in n ways, and the two tasks cannot be performed
simultaneously, then performing either task can be accomplished
in m + n ways.

® |f a task can be performed in m ways and another independent
task can be performed in n ways, then the combination of both

tasks can be performed in mn ways.
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® |fn+ 10rmore objects are placed in n boxes, then at least one box
contains more than one object. This principle is known as pigeonhole
principle.

® |f n pigeons are assigned to m pigeonholes, then one of the

pigeonholes must contain at least | (n—1)/mJ + 1 pigeons.

‘{ 6.6 ANSWERS TO CHECK YOUR PROGRESS

Ans.toQ.No.1: 9
Ans.toQ.No.2: 6
Ans.toQ.No.3: 64
Ans.to Q. No.4: 6760000
Ans.toQ.No.5: a)35 b)6

6.7 FURTHER READINGS

1. C. L. Liu, Elements of Discrete Mathematics, Tata McGraw-Hill
Edition.

2. Seymour Lipschutz, Marc Lars Lipson, Discrete Mathematics, Tata
McGraw-Hill Edition.

? 6.8 MODEL QUESTIONS

Q.1. If 20 candidates appear in a competitive examination then show
that there exist at least two among them whose roll numbers differ
by a multiple of 19.

Q.2. Determine the minimum number of elements to be selected from
thesetS={1,2,3,4,5,6, 7, 8, 9} so that sum of two of them is
10.

Q.3. Suppose 55 numbers are chosen in the range 1, 2, ..., 100. Show

that there is a pair of numbers that differ by 9.
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Q.4.

Q.5.

Q.6.

Q.7.

Q.8.

Show that in any room of people who have been doing handshaking
there will always be at least two people who have shaken hands
the same number of times.

If 9 books are to be kept in 4 shelves, there must be atleast one
shelf which contains at least 3 books.

Show that among any 4 numbers one can find 2 numbers so that
their difference is divisible by 3.

Given 12 different 2 digit numbers, show that one can choose
two of them so that their difference is a two-digit number with
identical first and second digit.

Suppose that 17 people correspond by email, each one with all
the rest. Each pair discusses one of three possible topics: politics,
science, or religion. Show that there are at least three people

who all correspond with each other about the same topic.
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7.2
7.3
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7.5
7.6
7.7
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7.3.1 Permutation of Distinct Objects
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7.3.3 Derivation of the Formula for "P,
7.3.4 Permutation of Objects not all Distinct
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Combinations
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Answers to Check Your Progress

Further Readings
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71

LEARNING OBJECTIVES

After going through this unit, you will be able to
® define permutation

® compute permutation of distinct objects

® describe factorial notation
o

describe combination.

7.2

INTRODUCTION

In the previous unit, we have learnt about the counting principle.

Here, in this unit, we shall learn some basic counting techniques. We will

introduce you to permutations and combinations which are most important

counting techniques widely used in various fields of modern science.
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7.3 DEFINITION OF PERMUTATION

NOTE
In permutations the order
of arrangement is taken
into account; when the
order is changed, a
different permutation is
obtained.

The word permutation means arrangement. For example, given 3
letters a, b, ¢ suppose we arrange them taking 2 at a time. The various
arrangements are ab, ba, bc, cb, ac, ca. Hence the number of arrangements
of 3 things taken 2 at a time is 6 and this can be written as °P, = 6.

Definition : The number of arrangements that 1 < r < n can be
made out of n distinct things taking r at a time is called the number of
permutations of n distinct things taken r at a time.

Notation : If nand rare positive integers such that, then the number
of all permutations of n distinct things, taken r at a time is denoted by the
symbol P(n, r) or "P.

Thus "P_= Total number of permutations of n distinct things taken r
at a time.

Example : Write down all the permutations of the vowels A, E, |, O,
U in English alphabet taking 3 at a time and starting with E.

Solution: The permutations of vowels A, E, I, O, U taking three at
a time and starting with E are EAI, EIA, EIO, EOI, EOU, EUO, EAO, EOA,
EIU, EUI, EAU, EUA.

Clearly there are 12 permutations.

7.3.1 Permutation of Distinct Object

Theorem : Let rand n be positive integers such that 1 <r<n. Then
the number of all permutations of n distinct things taken r at a time
is given by—

nin-1n-2)..(n-r+1)
i.e."P. =n(n-1)(n-2)..(n—r+1)
Proof : Let "P_denote the number of permutations of n things taken
rat atime.

Clearly the total number of permutations required is same
as the number of possible ways of filling up r blank spaces by n

things.
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1 1 1 [ L]

1 2 3 r

Let there be r blank spaces arranged in a row.

The first place can be filled up by any one of the n things in
n ways. If the first place is filled up by any one of the n things, there
will be (n — 1) things remaining. Now the second place can be filled
up by any one of the (n — 1) remaining things i.e. the second can
be filled up in (n — 1) ways.

Hencethe first two places can be together filled up in n(n—1)
ways [See 6.3 Rule of Product].

Having filled up these two places, we have (n — 2) things
remaining with which we can fill up the third place. So the third
place can be filled up by any one of these things in (n — 2) ways.

Hence the first three places can be together filled in

n(n —1)(n — 2) ways.

Proceeding in this way, we find that the total number of

ways of filling up the r spaces is

nn-1)n-=2)...... ... upto r factors
i.e. nn-1nN-=-2)....... (n=(r-1))
w"Po=n(n=1)(n=-2) ... .. (n—=(r—1))

=nn-1)n-2) ... ... ... (n=r+1)

Deduction : "P, =n,"P, =n(n-1),"P, = n(n—1)(n - 2), etc.

7.3.2 Factorial Notation

The continued product of first n natural numbers is called
the “n factorial” and is denoted by n! or |n

ie.nl=1%x2x3x4x, .. %x(n-1)xn

11=1
21=1x2
3l=1x2x3

41 =1 x 2 x 3 x4 and so on.
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We define 0! = 1

Thus we have, n! =1x2x3x4x%x .. x(n-1)xn
=[1x2x3x4x .. .x(n=1)n
=[(n-1)"n

n! =n[(n-1)
For example, 8! 8(7!)
9!
Example : Evaluate i) 6! i) W
Solution: i) 6!=1x2x3x4x5x6=720
. ﬂ_ 9x8x7! _
i) TR =9x8=72
S
2z -
< W
CHECK YOUR PROGRESS

Q.1. Evaluate 6! — 5.

n!
Q.2. Compute m,whenn=4and r=2
Q.3 Ifi+i—i find
e TR TR T TR

7.3.3 Derivation of the Formula for ”Pr

Theorem : Let rand n be positive integers such that 1 <r<n.

n!
(n_r)|,1£r£n

Proof :We know that "P = n(n—-1)(n-2) ... (n—r+1)

Then "Pr =

Multiplying numerator and denomirator by
(n=nn-r—1)..3x2x1, we get

n(n-=0(n-2)..(n—r+H(n-r)n-r-1).3x2x1
g (n=r)(n-r-1)..3x2x1

n!
- (n=r)!
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Theorem : The number of all permutations of n distinct things,
taken all at a time is n!
Proof : We have, "P_ = n(n-1)(n-2) ... (n—r+1)
By putting r =n,
"P=n(n-=1)(n-2)..(n—n+1)
=nn-1)n-2) ..... 1
=nl
"P=n
Example : Evaluate °P,

8! 8! (8x7x6)x5!

Solution : ®P, = 8_3)! = o — .

=8x7x6 =336
Example : If "P, = 360, find the value of n.
Solution : "P, = 360

n!
:m=6x5x4x3

n! ~ 6x5x4x3x2! 6!
7 (n-4)" 21 Y
=n!=6!
=>n=6

Example : In how many ways can five children stand in a queue?
Solution : The number of ways in which 5 persons can stand in a
queue is same as the number of arrangements of 5 different things
taken all at a time.

Hence the required number of ways = °P_= 5! = 120

Example : Find the number of different 4-letter words with or without
meanings, that can be formed from the letters of the word ‘NUMBER’
Solution : There are 6 letters in the word ‘NUMBER'.

So, the number of 4-letter words

= the number of arrangements of 6 distinct letters taken 4 at a time
= %P,

= 360.
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7.3.4 Permutation of Objects not all Distinct

The number of mutually distinguishable permutations of n

things, taken all at a time, of which p, are alike of one kind, p, are

n!

pi!p,!

We have a more general theorem—

alike of second such that p, + p, = n, is

The number of permutations of n objects, where p, objects
are of one kind, p, are of second kind, ..., p, are of k" kind and the
n!
Example : How many permutations of the letters of the word
‘APPLE’ are there?

Solution : There are 5 letters, two of which are of the same kind.

rest, if any, are all different kind is

The rest are all different.

5!
.. Required number of permutations is = LILILL
_ 8! _120
2t 2 T

Example : How many numbers can be formed with the digits 1, 2,
3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?
Solution : There are 4 odd digits 1, 1, 3, 3 and 4 odd places.

41
So odd digits can be arranged in odd places in ﬁ ways
The remaining 3 even digits 2, 2, 4 can be arranged in 3 even

3!
places in 5 ways.

41 3
4 3
2121 21
=6x3=18

Hence, the required number of numbers =

120
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7.3.5 Permutations When Objects Can Repeat

The number of permutations of n different things, taken r at
a time, when each may be repeated any number of times in each
arrangement, is n’

Consider the following example:

In how many ways can 2 different balls be distributed among
3 boxes?

Let A and B be the 2 balls. The different ways are :
Box 2 Box 3 |

N000EEREER
ORBEEEEOD

AR

NFOEE00EEE

[AB_|

i.e. 9 ways. By formula n" = 32 = 9 ways
Example : In how many ways can 5 different balls be distributed
among 3 boxes?
Solution : There are 5 balls and each ball can be placed in 3 ways.
So the total number of ways = 3° = 243
Example : In how many ways can 3 prizes be distributed among 4
boys, when i) no boy gets more than one prize?

i) a boy may get any number of prizes?

iii) no boy gets all the prizes?
Solution :
i) The total number of ways is the number of arrangements of 4

taken 3 at a time.
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ii)

So, the required number of ways = *P, = 4! = 24

The first prize can be given away in 4 ways as it may be given
to anyone of the 4 boys.

The second prize can also be given away in 4 ways, since it
may be obtained by the boy who has already received a prize.
Similarly, third prize can be given away in 4 ways.

Hence, the number of ways in which all the prizes can be given
away =4 x4 x4 =4%=64

Since any one of the 4 boys may get all the prizes, so the number
of ways in which a boy gets all the 3 prizes = 4.

So, the number of ways in which a boy does not get all the
prizes = 64 — 4 = 60

> a
) CHECK YOUR PROGRESS

Q4. If"-YP P, =1:09,find n.

Q.5. Find the value of n such that "P, =42 "P,, n >4

Q.6. How many arrangements can be made with the letters of
the word “MATHEMATICS”?

Q.7. How many 4 digit numbers canbe formed by using the digits
1, 2, 3, 4, 5, 6 if no digit is repeated? How many of these
are even numbers?

7.4 COMBINATIONS

The word combination means selection. Suppose we are asked to

make a selection of any two things from three things a, b and c. Then the

different selections are ab, bc, ac. In selections, the order in which objects

are selected is immaterial i.e. ab and ba denote the same selection. These

selections are called combinations.

Definition : A selection of r things out of n distinct things is called a

combination of n things taken r things at a time.
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Notation : The number of all combinations of n distinct objects,
taken r at a time is generally denoted by "C_or C(n, r).

Thus "C =Number of ways of selecting r objects from n distinct objects.

Difference between Permutation and Combination :

1. In a combination only selection is made whereas in a permutation
not only a selection is made but also an arrangement in a definite
order is considered.

i.e. in a combination, the ordering of the selected objects is
immaterial whereas in a permutation, the ordering is essential.

2. Usually the number of permutation exceeds the number of

combinations.

7.4.1 Derivation of the Formula for "C_

Theorem : The number of all combinations of n distinct objects,

taken r at a time is given by "C_= (n—n—r')'r'

Proof : Let the number of combinations of n distinct objects, taken
r at a time be denoted by "C .

Each of these combinations contains r things and if all these things
are permuted among themselves, then we get 'P = rl permutations.
The number of permutations obtained fromone combination =
Hence from all the "C_combinations we get"C_x r! permutations.But

this gives all the permutations of n things taken r at a time i.e. "P,.

"p n! n!
. n, = f = — n =
-G r! (n=n)r! as’P, (n=r) NOTE
Properties : 1)"C_=1 2)"C,=1 "C,="C,
3)"C ="C_ 0<r<n ayrc +nc_=mc, |77
or x+y=n
n!
Proof : 1) We know that "C =
r(n=r)r!
n! n!
i = n =———]——— = — = | =
Putting r = n, we have "C_ (n=r)r! = oin! 1 [0 =1]
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n! n!
2) Putting r= 0, we have "C, = —mirl m = 1
n! n!
3) We have "C_ = (n—r)(n—(n—r)) - (n—r)lr! ="C,

4) We have "C_+"C_,

n! n!
- (n=r)tr! " (n—(r=)!(r -1

n! n!
- (n=r)tr! i (n=r-=DY(r-"1)

n! n!
- (n=r)tr{(r-11 " (n=r=D{(n-r)(r-N1

n! {1+ 1 }
=(n—r)!(r—1)! r n-r+1

n! {n—r+1+r}
- (n=n)Xr-N{r(n-r+1)

n! { n+1 }
- (n=r)(r=M {r(n—r+1)

(n+1)n!
- (n=r+ND(n=r)r(r-1N

(n+1)!
T (n—=r+Nir!
(n+1)!
T (n+1=-n)r!
= n+1C
Example : Evaluate the following :

5
i) °C, i) 2.°C,

n=1

. . °P, 6x5x4
Solution: i) ¢C, = = =

= = =20
3 3! 1x2x3

5
it Z5Cr =5 5 5 5 5
ii) =°C, +°C, +°C, +°C, + °C,

n=1

=5+10+10+5+1=31
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Example : Let r and n be positive integers such that . Then prove

the following :
"C, n-r+1
nCr—1 r
n!
Solution : We have C __ (n-nr!
"C, n!
(n—r+Ni(r-1)
n! ><(r—1)!(n—r+1)
T (n=r)r! n!
(r=Dn-r+1D{(n-r)}
- r(r—=1H\(n-r)!
_(n=r+1)
B r

Example : From a group of 15 cricket players, a team of 11 players
is to be chosen. In how many ways this can be done?
Solution : There are 15 players in a group. We have to select 11
players from the group.
The required number of ways = "C_,
15x14x13x12
1x2x3x4
1365 ways

Example : How many triangles can be formed by joining the vertices
of a hexagon?
Solution : There are 6 vertices of a hexagon.
One triangle is formed by selecting a group of 3 vertices from given
6 vertices.
This can be done in °C, ways.

6!
Number of triangles = °C, = 3131 =20
Example : A class contains 12 boys and 10 girls. From the class 10
students are to be chosen for a competition under the condition

that atleast 4 boys and atleast 4 girls must be represented. Two
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girls who won the prizes last year should be included. In how many
ways can the selection be made?
Solution : There are 12 boys and 10 girls. From these we have to
select 10 students.
Since two girls who won the prizes last year are to be included in
every selection.
So, we have to select 8 students from 12 boys and 8 girls, choosing
atleast 4 boys and atleast 2 girls. The selection can be formed by
choosing
i) 6 boys and 2 girls
i) 5 boys and 3 girls
ii) 4 boys and 4 girls
Required number of ways

= (12C6 X BCZ) + (12C5 X 8C3) + (1zc4 x 8C4)

= (924 x 28) + (792 x 56) + (495 x 70)

= 25872 + 44352 + 34650

= 104874

\\\

' CHECK YOUR PROGRESS

Q.8. If"C, ="C,, find "°C .
Q.9. How many different teams of 8, consisting of 5 boys and 3
girls can be made from 25 boys and 10 girls?
Q.10. How many different sections of 4 books can be made from
10 different books, if
i) there is no restriction
ii) two particular books are always selected;
iii) two particular books are never selected?
Q.11. In how many ways players for a cricket team can be selected
from a group of 25 players containing 10 batsmen, 8 bowlers,
5 all-rounders and 2 wicket keepers? Assume that the team
requires 5 batsmen, 3 all-rounder, 2 bowlers and 1 wicket

keeper.
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. %4 751 ETUSSUMUP
TN=%

® A permutation is an arrangement in a definite order of a number of
objects taken some or all at a time.
® The number of permutations of n different things taken r at a time,

where repetition is not allowed, is denoted by "P and is given by
n!

(n—=r)!

® nl=1x2x3x%x..xn

® nl=nx(n-1)!

"P = ,1<r<n

® The number of permutations of n different things, taken r at a time,
where repetition is allowed, is n".

® The number of permutations of n objects taken all at a time, where
p, objects are of first kind, p, objects are of the second kind, ..., p,

objects are of the k"kind and rest, if any, are all different is

n!
pilp,t...p!
® The number of combinations of n different things taken r at a time,
n!
denoted by "C , is given by "C = m 0<r<n.

‘(‘ 7.6 ANSWERS TO CHECK YOUR PROGRESS

Ans.to Q. No.1: 6!-5!=720-120 = 600

4!
Ans. to Q. No. 2: We have to evaluate 21(4—2)! (sincen=4and r=2)

4! 4x3x2! 4x3 12

= - - :6
212! 212! 2! 1x 2
Ans.to Q.No.3: Weh i+ L 5
ns. to Q. No.3: We have 8! 9x8! 10x9x8!
X 10 X

1
1 L _—=
Therefore +9 10x9 or 9 10<9

So, x =100
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Ans.to Q. No. 4: PP, =1:9
= (n-1)(n-2)(n-3) : n(n—-1)(n-2)(n-3)=1:9
= 9(n—-1)(n-2)(n-3) = n(n—1)(n-2)(n-3)
=n=9
Ans.to Q. No.5: Given that "P, =42"P,
or n(n—1)(n—2)(n-3)(n—4) = 42n(n—-1)(n-2)
Since n >4 so, n(n-1)(n-2) # 0
Therefore, by dividing both sides by n(n—1)(n-2)
we get (n-3)(n—4) =42
or *-7n-30=0
or *—10n+3n-30=0
or (n-10)(n+3)=0
or n—-10=0o0rn+3=0
or n=10 orn=-3
As n cannot be negative, so, n = 10.
Ans.to Q. No.6: There are 11 letters in the word ‘MATHEMATICS’ of

which two are M’s, two are A’s, two are T’s and the rest are distinct.
1!
21x 21x 2!

6!
Ans. to Q. No. 7 : Total 4 digit numbers = °P, = - 6x5x4x3=360

To get an even number, the units place should be filled up by 2 or

.. required number of arrangements = = 4989600

4 or 6. So, this place can be filled up in 3 ways. Then the remaining

3 places can be filled up in °P, ways.

. Total 4 digit even numbers =3 x°P,=3 x5 x4 x 3 =180
Ans.toQ.No.8: "C,="C,=>n=4+6=10

Now 12Cn = 12C10= 12C(12—10) = 12C2 - 1x2 - 00

Ans.to Q. No.9: 5 boys out of 25 boys can be selected in >°C, ways.
3 girls out of 10 girls can be selected in "°C, ways.
. The required number of teams = C_x °C, = 6375600
Ans. to Q. No. 10 : i) The total number of ways of selecting 4 books out
0!

10!
of 10 ="°C= 4'_6' =210
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ii) Iftwo particular books are always selected, then we are to select
two books out of the remaining 8 books
8!
- Required number of ways = ®C, = 2'_6' =28
iii) If two particular books are never selected, then we are to select
four books out of the remaining 8 books
8!
- Required number of ways = ®C, = a4 =70
Ans. to Q. No. 11 : The selection of team is divided into 4 phases :
i) Selection of 5 batsmen out of 10. This can be done in '°C_ ways.
i) Selection of 3 all-rounders out of 5. This can be done in °C, ways.
iii) Selection of 2 bowlers out of 8. This can be done in 8C, ways.
iv) Selection of 1 wicket keeper out of 2. This can be done in 2C, ways.
The team can be selected in °C, x °C, x 8C2 x *C, ways
=252 x 10 x 28 x 2 ways

= 141120 ways

7.7 FURTHER READINGS

1. C. L. Liu, Elements of Discrete Mathematics, Tata McGraw-Hill
Edition.

2. Seymour Lipschutz, Marc Lars Lipson, Discrete Mathematics, Tata
McGraw-Hill Edition.

. 7.8 MODEL QUESTIONS

Evaluate : i) 8! i) 4! —
11X
Q.2. If NRETRETL find x.

n!
Q.3. Evaluate m wheni)n=6,r=2; ii)n=9,r=5

Q.4. How many 3-digit numbers can be formed by using the digits 1 to

9 if no digit is repeated?
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Q.5.
Q.6.

Q.7.

Q.8.

Q.9.
Q.10.
Q.11.

Q.12.

Q.13.
Q.14.
Q.15.
Q.16.

Q.17.

Q.18.

Q.19.

Q.20.

How many 4-digit numbers are there with no digit repeated?
How many 3-digit even numbers can be made using the digits 1,
2,3,4,6,7,if no digit is repeated?

Find the number of 4-digit numbers that can be formed using the
digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will
be even?

From a committee of 8 persons, in how many ways can we choose
a chairman and a vice chairman assuming one person can not
hold more than one position?

Findnif "-'P,:"P, =1:09.

Find rif i)°P =2°P_ i) °P_=°P__

How many words, with or without meaning, can be formed using
all the letters of the word EQUATION, using each letter exactly
once?

How many words, with or without meaning can be made from the
letters of the word MONDAY, assuming that no letter is repeated, if
i) 4 letters are used at a time, i) all letters are used at a time,
iii) all letters are used but first letter is a vowel?

If "C, ="C,, find "C,.

Determine n if (i) >C, : "C, =12 : 1 (ii) >"C, : "C,= 11 : 1

How many chords can be drawn through 21 points on a circle?
In how many ways can a team of 3 boys and 3 girls be selected
from 5 boys and 4 girls?

Find the number of ways of selecting 9 balls from 6 red balls, 5
white balls and 5 blue balls if each selection consists of 3 balls of
each colour.

Determine the number of 5 card combinations out of a deck of 52
cards if there is exactly one ace in each combination.

In how many ways can one select a cricket team of eleven from
17 players in which only 5 players can bowl if each cricket team
of 11 must include exactly 4 bowlers?

A bag contains 5 black and 6 red balls. Determine the number of

ways in which 2 black and 3 red balls can be selected.
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UNIT STRUCTURE

8.1 Learning Objectives
8.2 Introduction
8.3 Binary Operation
8.4 Definition of Group
8.4.1 Abelian Group
8.4.2 Finite and Infinite Groups
8.4.3 Order of a Group
8.4.4 Semi-Group
8.4.5 Examples of Groups and Semi-Groups
8.4.6 Properties of Groups
8.4.7 Laws of Indices in a Group
8.5 LetUs Sum Up
8.6 Answers to Check Your Progress
8.7 Further Readings
8.8 Model Questions

8.1 LEARNING OBJECTIVES

After going through this unit, you will be able to :

define a group and a semi-group

learn about abelian groups, finite and infinite groups
define order of a group

learn about some elementary properties of groups

define laws of indices of group-elements

find examples of both abelian and non-abelian groups.

8.2 INTRODUCTION

The theory of groups plays an important role in present day

mathematics and different branches of science, including computer science.
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NOTE : For the
operation * to be a
binary operation in G, the
closure property must
holdin G, i.e., foralla, b
e G, a * b must belong
to G

The structure of group is one of the simplest mathematical structures. It is
the starting point in the study of various algebraic systems such as Rings,
Fields, Vector Spaces, Linear operators, etc. In this present unit we shall
discuss groups, semi-groups, subgroups, examples of these structures
and their simple properties. We shall first define a binary operation on a

non-empty set, a pre-requisite for defining a group.

8.3 BINARY OPERATION

A binary operation or binary composition denoted by * in aset S
is @ mapping from SxS into S such that for all (a, b) € SxS, the image of (a,
b) under the mapping *, denoted by a * b, belongs to S.

In short, an operation or composition * defined on a non-empty set
S is called a binary operation or binary composition if a * b € S for all
a, b € S. We shall henceforth use the symbol ~' to represent the phrase
‘for all’. Thus, * is a binary operationon Sif a*be Sva,beS.If'¥isa
binary operation on a set S, then S is said to be closed under ‘*’ or the
closure property holds in S.

Example1 : Take S = { -1, 1}, Then ‘X’ is a binary operation on S,
but; ‘+’is not a binary operation on S. To check it, we construct the following

tables, showing addition and multiplication of the elements of S.

x -1 1 + -1
Table 1:| —1 1 |1 Table 2 : | -1 -2 0

Table 1 shows that the resulting elements belong to S again. So, ‘x’
is a binary operation on S. But table-2 shows that the resulting elements
do not belong to S, and so, ‘+’ is not a finary operation on S.

Example 2 : We know that sum of any two integers is again an
intiger. So, ‘+’ is a binary operation on Z. Similary ‘+’ is a binary operation
on Q, R, C also. ‘%’ is also a binary operation on Z, Q, R, C. ‘+’ is not a

binary operation on these number sets, since division by 0 is inadmissible.
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8.4

DEFINITION OF GROUP

A non-empty set G together with a binary operation *, denoted by

(G, *) is called a group if the following postulates are satisfied.

1.

Associativity :a*(b*xc)=(a*b)*cwa,b,ce G

2. Existence of identity : There exists an element e € G, called identity

element, such that
a*e=a=exawaeCG
Existence of inverse : For each a € G, there exists an element,
denoted by a'in G such that
ax*a'=e=a'=xa

a'is called the inverse element of a.

8.4.1 Abelian Group

Agroup (G, *)is called an Abelian group or a Commutative
group if the commutative law holds in G, i.e.a*b=b*awva,b e

G otherwise, a group is called a non-abelian or non-commutative

group.

8.4.2 Finite and Infinite Groups

A group (G, *) is called a finite group if it has a finite number

of elements, otherwise it is called an infinite group.

8.4.3 Order of a Group

The number of elements in a group (G, *) is defined as the
order of the group and is denoted by O (G) or | G |. If G is a finite
group, then O (G) is a finite number. An infinite group is said to be

of infinite order.

8.4.4 Semi Group

A non-empty set G together with a finary operation ‘*‘ is

called a semi group if associativity holds in G, i.e,

NOTE : Henceforth,
unless specifically
defined, we shall use the
symbol ‘.’ (dot) in place
of ‘+’ for a binary
operation in a group, as
‘. is more convenient to
write rather than ‘*’.

In fact, we can simply
say that G is a group
instead of saying (G, *)
is a group and we can
write ab instead of

a * b if there is no
likelihood of any
confusion regarding the
binary composition in the
group.
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a*(b=xc)=(a*b)*xcwa,b,ceG

In otherwords, G is a semi-group if closure and associativity
with respect to an operation ‘+’ holds in G.

Similar to groups, we can also define abelian semi-group,
finite and infinite semi-group, order of a semi-group. From definitions
of Group and Semi-groups, it is obvious that every group is a
semi-group. Later on, we shall find examples of semi-groups which

are not groups. In otherwords, every semi-group may not be a group.

8.4.5 Examples of Groups and Semi Group

Example 1: (Z, +) is a group, called the groups of integers under
usual addition.
1. We know at+b € Z » a, b € Z since sum of two integers is
again an integer. Thus '+’ is a binary operation in Z.
2. Weknowa+ (b+c)=(at+b)+cwa,b,ceZ,i.e., associativity
holds in Z under addition.
3. 0 e Zandforanya e Z, we know
a+0=a=0+a
4. ForaeZ,—a e Z, and we know
at(-a)=0=(-a)+a
So, —ais the inverse element of ain Z. It is called the additive
inverse of a.
5. Fora, b € Z, we know a + b = b + a, i.e., commutativity
under addition holds in Z.
Hence (Z, +) is an infinite abelian group.
Example 2 : As in example 1, it can be easily shown that (Q, +),
(R, +), (C, +) are all infinite abelian groups. These are respectively
called additive groups of rational numbers, real numbers and
complex numbers.
Example 3 : Let Q° = Q — {0}. Then (Q° x) is an infinite abelian
group, called the multiplicative group of non-zero rational

numbers.
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1. Leta,be Q" Thena,be Qanda=0,b=0.Clearly, ab
Q and ab = 0. Hence ab € Q0 i.e., the closure property
under multiplication holds in Q°.

2. The associativity under multiplication holds in Q°, since it
holds in Q.

3. 1 e Q% and for any element a € Q°,

ax1=a=1xa
So, 1 is the multiplicative identity in Q°.
4. aeQ=aeqQ, a=0
1
= g e Q, 5 #0
1
=3 € Qe
Clearlya><1=‘l=1 X a
a a
Hence, % is the multiplicative inverse of a in Q°.

5. Clearly, commutativity holds in Q°. Thus (Q° x) is an infinite
abelian group.

Example 4 : Let R = R — {0}. Then as in example 3, it can be
shown that (R° x) is an infinite abelian group. It is called the
multiplicative group of non-zero real numbers.

Example 5 : Let C° = {x+iy : X, y € R and x+iy # 0}. Then (C?°, x) is
an infinite abelian group.

1. Leta+ib, c+id € C°. Then a+ib = 0, c+id # 0. It can be shown
that

(a+ib)(c+id) = (ac-bd) + i(ad+bc) € C°
So, closure property under multiplication holds in C°.

2. Product of complex numbers obeys the associative law and
so, the associativity also holds in C°. [Prove yourselves]
1=1+i.0 e C and it is the multiplicative identity in C°.

4. Ifa+ib e C° a+ib =0 and hence

1 1 .
atib  al+b? al+p? < C-Cleanly
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(a+ib) x 1 1 i
(a+ib) ~ '~ (a+ib) * (@*ib)
1 o
Thus — is the multiplicative inverse of a + ib in C°.
a+ib

5. The commutative law (a+ib)(c+id) = (c+id)(a+ib) for
a+ib,c+id e C°is obvious.

Hence (C°, x) is an infinite abelian group.

It is called the multiplicative group of non-zero complex

numbers.

Example 6 : (Q*, x), (R*, x) are multiplicative groups of positive
rational numbers and positive real numbers respectively. But (Z*, x)
is not a group, i.e., the set of positive integers is not a group under
multiplication, because except —1 & 1, no element of Z* has
multiplicative inverse. Clearly (Z*, x) is a semi-group since colsure
and associativity under multiplication holds in Z*.

Example 7 : Let G = {1, w, w?}, where w is an imaginary cube root
of unity. It can be easily checked that G is a multiplicative group
where 1 is the identity, inverse of w is w? and inverse of w? is w. It is
a finite abelian group where 0(G) = 3.

Example 8 : Let G = {£1, #i, 1j, £k}. Let us define product in G as
follows :

1.1=1,(-1).(-1)=1,i2=)2=k?2=-1,

ij =—ji =k, jk=-kj =i, ki =—ik =].

It can be verified that G satisfies all the group postulates
except commutativity, since ij # ji. Hence G is a finite non-abelian
group. This is called the Quaturnion Group.
Example9:LetG={0, 1, 2, 3, 4, 5}. Forany two elements a,b € G,
let us define an operation denoted by ® such thata @ b = ¢, where
c is the least non-negative integer obtained on dividing (a+b) by 6.

The following table gives us the results when @ is applied on G.
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@ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4
Clearly, 1) closure property holds in G
2) associativity holds in G
3) 0 is the identity element.

4) additive inverses of 1, 2, 3, 4, 5 are 5, 4, 3, 2, 1
respectively.
5) the commutativity also holds.
Hence, (G, @) is a finite abelian group.
It is called the ‘Group of Residues Modulo 6’.
In general, Z ={0, 1, 2, ..., n — 1} is called the ‘Group of
Residues Modulo n’, where the operation @ is defined as
a®b=c
where c is the least non-negative integer obtained on dividing a+b
by c. It is a finite group, 0(Z ) = n. The operation @ is called the
operation of ‘addition modulo n’.

Example 10 : Let G be the set of all 2x2 non-singular
matrices over real numbers, that is,

X1 X2
G= X, eRand =0
X3 X,

Then G is a group under matrix multiplication.

Xi X

X3 X,

d r
Thena, b,c,d,p,q,r,s e Rand |A| =0, |B| #0.

a b)(p q ap+br aq+bs
NowAB=1¢: gJlr )7 cp+dr cq+ds

Clearly ap + br, aq + bs, cp + dr, cq + ds € R.

ab P q
1. LetA= c ,B= S be any two elements of G.
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Also |AB| = |A|.|B| =0 as |A] # 0, |B| # 0.

Hence AB € G, i.e., closure property holds in G.

As matrix multiplication is associative, so the associativity
holds in G.

10
| = 0 1 eGas|l|=

Forany A € G, A.l = A= I.A. Hence | is the identity element
in G. 1

SinceAe G= |A|#0,s0A" = W .adj A € G such that
AAT=1=A"A.

10
0 1

‘=1¢O

Thus every element of G has its inverse in G. Hence G is a

group under matrix multiplication.

1 2 4 5
Take A = 3 4 ,B= 6 7 . Then
1 2\(4 5) (16 19
AB=13 4/)le 7)7 |36 43
4 5\(1 2\ (19 28
BA=l6 7)l3 4)7 |27 40
So, AB = BA, i.e., the commutative law does not hold in G.

Hence, G is a non-abelian infinite group.

8.4.6

Properties of Groups

We shall now prove some properties of groups and semi-

groups. We shall not mention the binary operation in considering a

group G for establishing these properties. It should be understood

that when we write the product ab for two elements a, b € G; there

exists a binary operation between a and b.

Property 1 : The identity element in a group is unique.

Proof : Suppose a group G has two identities e and e’'.

Taking e as identity, we get
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Again taking e’ as the identity, we get

From (1) and (2) we get
e=ee =¢
Hence the identity in G is unique.
Property 2 : The inverse of an element in a group is unique.
Proof : Let G be a group and a € G. Suppose b and ¢ are two
inverse elements of G.
Then ab=e=ba ... (1)
ac=e=ca ... (2)
where e is the identity in G.
Now b = be
= b(ac), from (2)
= (ba)c, using associativity
= ec, from (1)
= ¢, using definition of identity.
Hence the inverse of a is unique.

Property3:Inagroup G, i) (a')'=avaeG

i) (aby'=b'a'va,beG
Proof : Let e be the identity element in G. ——e—

i) Leta e G. Then NOTE : If G be an
abelian group, then
(ab)y'=b"a"'=a'b".

In otherwords, for a non-

aa'=e=a'a . )

Again a' € G. So,

a'@’)y'=e=(")y'a’ ... (2) abelian group, we
Now (a™')" = e(a™')"’ cannot write
= (aa~")(@™")", using (1) (ab)™ =a"b™".

= a[a7'(a™")"], using associativity
= ae, using (2) = a
i) Leta,be G Thena', b eG
Now (ab)(b~'a') = [(ab)b-"]a~!, using associativity
= [a(bb~")]a~"
= (ae)a™

=aa'=e
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NOTE : In general, in a
group G,
ab=cabb=c.

This is due to the fact
that we cannot change
the order of ca as ac
unless G is abelian. For
an additive group (G, +)
a' charges to —a, (a™')’
changes to —(-a), the
cancellation law
‘ab=ac=>b=c
changes to

‘atb = at+c = b =/, etc.

Similarly, (b-'a™')(ab) = e
Thus (ab)(b™'a™) = e = (b'a™")(ab)
Hence, (ab)™ = b'a".
Property 4 : The concellation laws hold in a group.
That is, if a, b, c € G, then
i) ab =ac = b =c [left cancellation law]
i) ba=ca= b=c [right cancellation law]
Proof : Let e be the identity ina group Gand a, b, c € G
i) ab=ac = a'(ab)=a"(ac)
= (a'a)b = (a'a)c, associativity
=eb=ec
=>b=c
i) ba=ca = (ba)a” = (ca)a™
= b(aa™') = c(aa™)
= be =ce
=b=c.
Property 5 : For elements a, b in a group G, the equations ax = b
and ya = b have unique solutions in G.
Proof : ax=b = a'(ax) =a'b
= (a'a)x=a'b
—ex=a'b
= x=a'b,
which is a solution of the equation ax = b, since a”'b € G.
If possible, suppose x,, x, are two solutions of ax = b in G.
Then ax, = b, ax, =b = ax, = ax,
= X, = Xy,
using the left cancellation law.
Hence the solution of the equation ax = b is unique in G.

Similarly, ya = b has the unique solution y = ba™' in G.

8.4.7 Laws of indices in a Group

Leg G be a group and a € G.
We define i) a° = e, the identity of G
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i) a"=a.a.a....a, nfactorswheren e N
i) a"=a"'a"'.a’'. ..a’, nfactors wheren e N
It can be shown that forallm, n € Z,
a"=(a)"=(a")"
ama"=agmmn
and (a™)"=am

These are called laws of indices for group elements.

ILLUSTRATIVE EXAMPLES

Example 1 : In ‘Q", the set of positive rational numbers, define an
operation * such that
a*b=abeQ.
Show that (Q*, *) is an infinite abelian group.
Solution :
1) a,be Q" :a?b e Q
—ax*beQ"
Hence * is a binary operation in Q*.
2) Fora,b,c e Q,

3)
bc al — abc
a*(b*c)=a*(—j= 2)=—=

2 5 4

ab
(a_b] _(zjc_a_bc
(@a*b)xc= 5 | *¥C= > =

Thus a = (b * ¢) = (a * b) * ¢, showing that the associativity holds in
Q.
3) Forae QY a*2=a=2x*aand so 2 plays the role of the identity

element in Q* under ‘*’.
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Hence E is the inverse of ain Q*, i.e.a' = g vae Q.

Thus, all the group postulates are satisfied. Moreover, the

commutative law hold in Q*, since

b ab ba 5

%k == — = %

a 5 5 a.

Hence (Q*, *) is an infinite abelian group.

Example 2 : Show that the set E of all even integers is a group

under addition.

1)

Solution :
Leta,b e E. Thena=2m, b =2n, wherem, n € Z.
Now,a+b=2m+ 2n=2(m+n) =2l € E, since | =m+n ¢ Z.
Thus E is closed under addition.
The associativity holds in E, since it holds in Z.
0 € E and it is the additive identity in E.
a=2meE=-a=-2m=2(-m)e Eanda+ (-a)=0=(-a) + a.
So, every element in E has its additive inverse in E.
Hence (E, +) is a group.
Example 3 : Show that a group G is abelian if and only if
(ab)?=a%?va,b e G
Solution : Let G be abelianand a, b € G.
Then (ab)? = (ab)(ab)
= a(ba)b, using associativity
= a(ab)b, as G is abelian
= (aa)(bb)
= a’b?.
Conversely, suppose (ab)? = a?b? v a, b € G.
Then (ab)(ab) = (ab)(bb)
= a(ba)b = a(ab)b
= (ba)b = (ab)b, using left cancellation law
= ba = ab, using right cancellation law

Thus ab = ba =+ a, b € G which shows that G is abelian.
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" y 4
a

A\

CHECK YOUR PROGRESS

Q.1. Show that the set of integers Z is an abelian group under the

operation * definedbya*b=a+b+1+va,beZ

Q.2. Show that Z is not a group under the operation * defined by

ax*b=a-bwa,beG

Q.3. Show that the set M of all 2x2 matrices over integers is a

semi-group but not a group under matrix multiplication.

Q.4. Show that cancellation laws may not hold in a semi-group.

: _kg 8.5 LET US SUM UP
Lhe |

® An operation * defined in a non-empty set S is called a binary

operationifa*b e Sforalla,b € S.

® A non-empty set G together with a binary operation * is called a
group if the following postulates are satisfied :
Associativity:a* (b*c)=(a*b)*cwva,b,ce G

Existence of identity: e € Gsuchthatforanyae G a*xe=a=e=x*a
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Existence of inverse : for every a € G, there exists a' € G such that
a*a'=e=a'xa

The group is denoted by (G, *).

(G, *) is an abelian or commutative groupifa*b=b*ava,be G
A group is called a finite group if it has finite number of elements,
otherwise a group is called infinite.

The number of elements in a group (G, *) is called the order of G,
denoted by 0(G) or |G]|.

A non-empty set G together with a binary operation * is called a
semi-group if the associativity holds in G, i.e.,
a*(b=*c)=(@a*xb)*xcwa,b,ceG

Every group is a semi-group, but every semi-group may not be a
group.

The identity element in a group is unique.

The inverse of an element in a group is unique.

Inagroup G, (a')y'"=awvaeGand(ab)'=b'a’'wa,beG
The cancellation laws hold in a group G, i.e., ifa, b, ¢ € G, then
ab=ac=b=c

ba=ca=b=c

A(‘ 8.6 ANSWERS TO CHECK YOUR PROGRESS

Ans. to Q. No.1: We show that Z under the given operation satisfies all

the group postulates.

1) Fora,beZ a+b+1eZ=ax*bel
So * is a binary operation in Z.

2) Fora,b,ceZ
a*(b=*c)=a+((b*c)+1=a+(b+c+1)=a+b+c+2
(@a*b)xc=(a*b)+c+1=(@a+b+1)+c+1=a+b+c+2
So, a * (b * c) = (a * b) + ¢ and thus the associativity holds.

3) 1eZandax*(-1)=a+(-1)+1=a,

(-1)*xa=(-1)+a+1=a

Thus a * (-1) =a = (1) * a, showing that —1 is the identity in Z.
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4) aeZ=>—-(a+2)eZandax*[-(a+2)]=a-(a+2)+1=-1

and[-(a+2)]*a=—(a+2)+a+1=-1.
Hence, a * [-(a+2)]=—-1 =[-(a+2)] *a

[showing that a=' = —(a + 2)]

5) Fora,beZ a*xb=a+b+1=b+a+1=>b=*a, showing that

commutativity holds.

Hence (Z, *) is an abelian group.

Ans. to Q. No. 2: The operation * defined in Z is given by

a*b=a-bwva,bel
Now 2, 3,4  Z and
2x(3%4)=2%3-4)=2*(-1)=2-(-1)=3
(2%3)*x4=(2-3)*4=(-1)x4=-1-4=-5
Thus we get 2 % (3 x4) = (2 * 3) * 4, i.e., the associativity under

* does not hold in Z.

Hence Z cannot be a group under the given operation.

ab
Ans.to Q.No.3: M/2)= {(C dj:a, b,c,d eZ}

1)

a, a, b, b, c, C,
LetA= a, a,)’ B= b, b, ) C= c, ¢,
be any three elements of M(Z) where a, b, ¢ € Z

a, a,)\(b, b, ab,+ab, ab,+ab,
AB=la, a,)\b, b,) ~\apb,+ab, ab,+ab,

[a1 az]

where o, =ab, +ab,eZ a,=ab,+ab, eZ

a,=ab, +ab, e”Z o,=ab,+ab, e’
Since a, b, ¢, € Z.
Thus AB is again a 2x2 matrix over Z, that is AB € M,(2).
Since A, B, C are 2x2 matrices, clearly the products AB, BC
exist and it can be easily shown that A(BC) = (AB)C.
Thus the associativity holds in M,(Z).

Hence M,(Z) is a semi-group under matrix multiplication.
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10
I = (O 1] is the multiplicative identity in M,(Z). But existence of

inverse element for every element does not hold in M,(Z).
1 2
For example, A= 1 2] € M.(Z)

1 2
where |A| = ‘1 2‘ =0, and so A" does not exist.

Hence M,(Z) is not a group.

10 0 0 00
Ans.to Q. No.4: TakeA= 00 ,B= 0 2 and C = 3 4]

Then A, B, C e M,(2).

1 0)(O0O O 0 O
Now AB = o o/lo 2 = 0 0 = 0, the zero matrix.

1 0Y(O0O O 0 0
Also AC = 0 0ll3 4 = 0 0 =0.
Thus AB = AC, but B = C.

Hence cancellation laws may not hold in a semi-group.

, 8.7 FURTHER READINGS

Modern Algebra — S. Singh & Q. Zameeruddin, Vikas Pub. House
Pvt. Ltc.

2. Acourse in Abstract Algebra — V. K. Khanna & S. K. Bhambri, Vikas
Pub. House Pvt. Ltc.

8.8 MODEL QUESTIONS

Q.1. Show that (Q, +), (R, +), (P, +) are infinite abelian groups.

Q.2. Show that the set of non-zero real numbers R° is a group under
multiplication.

Q.3. Show that the set of natural numbers N is a semi-group under

the operations (i) addition, (ii) multiplication.
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Q.4.

Q.5.

Q.6.

Q.7.

Q.8.

Q.9.

Q.10.
Q.11.

Q.12.

Q.13.

Q.14.

Show that G ={-1, 1, —i, i} is an abelian group under multiplication.
Write down 0(G).

Let m be a positive integer greater than 1 and

mZ = {0, £#m, £2m, +3m, ...} be the set of all integral multiples of
m. Show that (mZ, +) is an abelian group.

Give examples of :

i) a finite abelian group

ii) a finite non-abelian group
iii) an infinite abelian group
iv) an infinite non-abelian group.

Let G = R — {-1}. Define an operation * on G by

a * b =atb+ab + a, b € G. show that (G, *) is an abelian group.
Examine whether R is a group under the operation * defined by
a*b=2@tb)va,beR.

Show that if every element of a group is its own inverse, then the
group is abelian.

If in a group G, a2 = e v a e G, then show that G is abelian.

Let G be any set having atleast two elements. For a, b € G, define
a * b = b. Show that G is a semi-group under * but not a group.
Show that the set Q* of all positive rational numbers is a group
under usual multiplication of numbers.

Show that the set R* of all positive real numbers is a group under
usual multiplication of numbers.

Show that M,(R), the set of all 2x2 matrices over real numbers is

an abelian group under the operation of matrix addition.
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UNIT 9 : RING

UNIT STRUCTURE

9.1 Learning Objectives
9.2 Introduction
9.3 Definition of a Ring
9.3.1 Commutative Ring
9.3.2 Ring with Unity
9.3.3 Ring with or without Zero Divisors
9.3.4 Examples of Rings
9.4 Properties of a Ring
9.5 LetUs Sum Up
9.6 Answers to Check Your Progress
9.7 Further Readings
9.8 Model Questions

9.1 LEARNING OBJECTIVES

After going through this unit, you will be able to
® define a ring

know commutative ring

know ring with unity

know ring with zero divisors

know elementary properties of a ring.

9.2 INTRODUCTION

In the preceding unit, are have discussed Groups — an algebraic
system consisting of a non-empty set together with one binary operation.
The most common of these groups are the groups of numbers (Z, +), (Q,
+), (R, +), (C, +), (Q° x), (R?, x), (C°, x), etc. But we know that multiplication
is also a binary operation in these sets, which is associative as well as

distributive over addition. This leads us to the study of algebraic system

148

Discrete Mathematics



Ring

Unit 9

with two binary operations. Such algebraic systems are Rings, Integral
Domains, Fields, Linear Spaces, etc. In this unit we shall study Rings

and elementary properties of a ring.

9.3 DEFINITION OF ARING

An algebraic system (R, +, .) consisting of a non-empty set R and
two binary operations, denoted by ‘+’ and ‘.’ in R is called a ring if the
following postudates are satisfied :

R,: (R, +)is an abelian group, i.e.,

i) a+(btc)=(atb)+cwa,b,ceR
i) There exists an element, donoted by 0, in R such that
at0=a=0+avacecR
‘0’ is called the additive identity or the zero-element of
the ring.
iii) Forevery a € R, there exists an element, denoted by —a,
in Rsuchthata+(-a)=0=(-a)+a
This element ‘—a’ is called the additive inverse of a.
iv) atb=btava,beR
R,: (R,.)is asemi-group, i.e.,
v) a.(b.c)=(a.b).cwa,b,ceR
R, : Multiplication is distributive over addition in R, i.e., for all a, b,
ceR
vi) a.(b+c) = a.b + a.c (left distributive law)
vii) (b+c).a = b.a + c.a (right distributive law)

If R has finite number of elements, then (R, +, .) is called a finite
ring, otherwise it is called an infinite ring.

From group-properties we know that the identity element of a group
is unique and every element of a group has unique inverse. If (R, +, .) is a
ring, then by R, (R, +) is a group and hence the zero element, 0 € R is
unique. Similarly, for a € R, the additive inverse ‘—a’ is also unique.

Let us caution ourselves that whenever we use '+ and ‘.’ for the
two binary operations called ’addition’ and ‘multiplication’ respectively in a

ring (R, +, .), we should not confuse them with the arithmetic operations of
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addition and multiplication of real numbers. These operations may stand
for addition and multiplication of ordered pairs, addition and multiplication
of matrices, etc. Similarly, we should not confuse with the zero element of
a ring with the real number 0 and the additive inverse —a of an element in
a ring with the negative integer —a.

Basic Conventions :

1. If this is no scope for confusion regarding the binary operations,
instead of writing (R, +, .) is a ring’, we shall simply write ‘R is a
ring’. It should be understood that + and . are the binary operations
in the ring R.

2. The product of two elements a and b is a ring R will be simply
written as ab, instead of a.b.

3. Ifa, b are two elements in a ring, then the element a + (—b) will be

written as a — b.

9.3.1 Commutative Ring

If the commutativity under multiplication holds in a ring, that
is,ab=ba »a,b € Rthen Ris called a commutative ring, otherwise

R is called a non-commutative ring.

9.3.2 Ring with Unity

If in a ring R, there exists an element denoted by 1 such
thatal =a=1a va e R, then Ris called a ring with unity, and 1
is called the multiplicative identity or the unity in R. If 1 ¢ R, we
say that R is a ring without unity.

We should note that 1 is just a symbol to denote the
multiplicative identity of a ring R, we should not confuse it with the

integer 1. Some authors also use the symbol ‘e’ for unity in a ring.

9.3.3 Ring with or without Zero-Divisors

LetRbearinganda,b e R.Ifa=0,b=0butab=0, then

a and b are called divisors of zero or zero-divisors in R.
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If there exists atleast one pair of zero-divisors in a ring R,
then R is called a ring with zero-divisors.
R is called a ring without zero-divisors if fora, b € R,

ab=0=eithera=0o0rb=0.

9.3.4 Examples of Rings

Example 1 : (Z, +, .) is a commutative ring with unity and without
zero-divisors.

We already know that (Z, +) is an abelian group.

Also a, b € Z = ab € Z and so, multiplication is a binary
operation in Z.

Clearly, for a,b,c e Z,

a(bc) = (ab)c,

a(b+c) = ab + ac,

(b+c)a =ba + ca
Also1eZanda1=a=1avacl
Againab=bawva,b e Z
Moreover,ab=0=a=0orb=0is Z.

Hence Z is a commutative ring with unity 1 and without zero-
divisors under the operations of usual addition and multiplication
of numbers.

Example 2 : Similar to example 1, it can be easily shown that Q, R,
C are commutative rings with unity and without zero-divisors under
usual addition and multiplication.

Example 3 : If m be a positive integer greater than 1 and

mZ = {0, +m, £2m, +3m, ...}, then mZ is a commutative ring without
unity, without zero-divisors.

Example 4 : Let M,(Z) be the set of all 2x2 matrices over integers.
Then it is a non-commutative ring with unity under addition and
multiplication of matrices. It is a ring with zero-divisors.

It is a routine work to verify that R,, R, and R, holds in M.(Z)

under the operations of matrix addition and multiplication,
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0 0
where 0 = [O OJ is the zero-element and the additive inverse of

an element

10
= [O J is the unity in M(Z). Hence it is a ring with unity.

1 2 2 3)
Now, let us take A = 3 4 , B = 4 5/in M.(Z). Then
1 2\(2 3 0 13
AB=13 4)la 5/ |22 20 &
2 3\(1 2 1 16
BA=14 5/|l3 4/~ (19 28

and so, AB = BA.

Thus, commutativity under multiplication does not hold in M,(Z).

1
2
1

Hence M,(Z) is a non-commutative ring.

0 0 0 1

1 0\(0O O 0 0
ButAB=0001=OO=O

Thus A= 0, B = 0 but AB = 0.

10 0 0
Again, let us take A = ,B= sothatA=0, B #0.

Hence A and B are zero-divisors, and so M,(Z) is a ring with
zero-divisors.
Examples 5 : Let S be any set and P(S) be the power set of S. For
A, B € P(S), let us define A+ B = (A-B) u (B-A), AB =A N B.

Then P(S) is a commutative ring with unity.

Clearly A+B < P(S), AB € P(S) v A, B € P(S).

So + and . are binary operations in P(S).

It can be shown that for A, B, C € P(S)

A+ (B+C)=(A+B)+C

A+¢o=A=¢+A, and so ¢ is the zero-element in P(S).
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A+A=¢=A+A) showing that Ais its own additive inverse.
A+B=B+A

A(BC) = (AB)C

A(B+C) =AB + AC, (B+C)A=BA + CA

AB = BA

AS=AnS=A=SnA=SA

Hence P(S) is a commutative ring with unity S.

Moveover,

Examples 6 : LetR ={0, a, b, ¢} and let us define ‘+’ and *.’ in R by

the following tables :

+10la|b|c Ola|bj|c
0| O|la|b]c 0/]0/0]|0]0
ala|0flc|b al0Ola|b|c
bl b|jc|0]|a b|l|Oja|b]|c
clc|bla|0 c|0{0|0]O0

It can be easily checked from the above tables that R is a
non-commutative ring without unity having zero-divisors.
Example7:InZ ={0,1, 2, 3, ..., n=1}, let us define fora, b € Z .
a @ b = c where c is the least non-negative remainder obtained on
dividing a+b by c. Then from unit 8, we know that (Z , ®) is an
abelian group.

Let us now define a ® b = ¢, where cis the least non-negative
remainder obtained on dividing ab by c. Then it can be proved that
(Z,, ®) is a semi-group and also the distributive laws of ® over @
holds in Z . Hence (Z , ®, ®) is a ring.

Moreover, 1 is the unityinZ andalsoa®b=b® a fora, b
e”Z.

Hence Z is a commutative ring with unity. This ring is called

the ‘Ring of Integers Modulo n’.

9.4

PROPERTIES OF ARING

Let R be aring. Then for all a, b € R the following properties hold

i) a0=0=0a

i) a(-b) = (~a)b = —(ab)

NOTE : Let us take the
ring of integers modulo
6,2,={0,1,2,3,4,53}
Clearly2 ® 3=0but 2 =
0,3%#0,i.e.,2and3 are
zero-divisors in Z,. So, Z,
is a ring with zero-
divisors. In general, Z_is
a ring with or without
zero-divisors according
as n is a composite
number or a prime
number respectively.
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i) (-a)(-b)=ab
iv) a(b—c)=ab - ac, (b—c)a=ba--ca
% Proof :
NOTE : We already i) Forall aeR,
obtained laws of indices a0 = a(0+0)

for group elements.
Since for a ring

(R, +, =), both + and - are
binary operations, that

= a0 + 0 =a0 + a0, using definition of zero element and the left-
distributive law.

= 0 = a0, using the left-cancellation law in the group (R, +)

is, R is closed under + Similarly, 0Oa =0
and -, so the laws of Hence a0 = 0 = 0a
indices for ring elements i) a[b+(~b)] = a0 = 0, by (i)

hold under certain
restrictions. These are
na + ma = (n+m)a

= ab + a(-b) =0, by left distributive law

= ab + a(-b) =0 = a(-b) + ab, as (R, +) is abelian

na + nb = n(a+b) = a(-b) = —~(ab)
where n, m are any Similarly, (—a)b = —(ab)
integers. Hence a(-b) = (-a)b = —(ab).

If n, m are positive

integers, then iii) (-a)(-b) =—{a(-b)], using (i)

an.am = amm, = —[—(ab)], again using (ii)
(@)™ =a™. =ab [See note after property 4, 8.4.6]
iv) a(b—c) = a[b+(—c)]
= ab + a(-c)
= ab + [-(ac)]
= ab —ac.

Similarly, (b—c)a = ba — ca.

[ T LA ]
Z N A/
4 Q ~ r
' CHECK YOUR PROGRESS

Q.1. Give an example of a commutative ring with unity having 2

elements.
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Q.2. Show that R = {a+ib : a, b € Z} is a ring with unity under
usual addition and multiplication of complex numbers.
Q.3. ShowthatZ ={0, 1, 2, 3, 4, 5, 6} forms a ring under addition
and multiplication modulo 7.
Q.4. Show that the cancellation laws hold in a commutative ring if
and only if it has no zero-divisors.
Q.5. Prove that if R is a ring with unity, then the unity is unique.
Q.6. If the unity and the zero element of a ring R are equal, then
show that R = {0}.
Q.7. IfinaringR,a?2=awa e R, prove that :
i) 2a=0~vaeR
i) Ris a commutative ring.
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_L@ 9.5 LET US SUM UP

T

® A non-empty set R together with two binary operations + and . is a
ring if (R, +) is an abelian group, (R, .) is a semi-group and if the
distributive laws of multiplication (.) holds over addition (+) is R.

® Aring R is called a commutative ring if ab =ba v+ a, b € R.

® R s called a ring with unity if there exists an element 1 € R such
thatal=a=1a~vwaeR.

® |[f there exist elements a, b in a ring R such that a # 0, b = 0 but
ab =0, then a, b are called zero-divisors and R is called a ring with
zero-divisors.

® The following prosperties hold in aring R :

i) ab=0=0awaeR
i) a(-b)=(-a)b=—(ab)wa,beR
i)y (-ka)(-b)=abwa,beR

iv) a(b-c)=ab-ac, (b-cla=ba-cava,beR.

‘{ 9.6 ANSWERS TO CHECK YOUR PROGRESS

Ans.to Q. No.1: Take R = {0, 1} and define + and . is R as in the

following tables.

0

It is now easy to verify that (R, +, .) is a commutative ring
with unity 1.
Ans.toQ.No.2: R={atib:a,be Z}
Leta+ib,c+id e Rwherea, b, c,d e Z.
Then (a+ib) + (c+id) = (a+c) + i(b+d) € R, since a+c, b+d € Z.
Also (a+ib)(c+id) = (ac—bd) + i(ad+bc) € R,
since ac—bd, ad+bc € Z.

Hence, both addition and multiplication are binary operation is R.
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If can be easily verified that the associative law under + and x
holds in R, the commutative laws under + and x also holds in R, 0 =
0+i.0 is the zero element in Rand 1 = 1+i.0 is the unity in R. Also the
distributive laws of multiplication over addition holds in R. Hence, R
is a commutative ring with unity under usual addition and multiplication.
Ans.to Q.No.3: Z,={0,1,2,3,4,5,6}. The operations of addition and
multiplication modulo 7 is shown in the tables below :
®@(0(1]2|3|4|5|6 ®| 0|1 3/4|/5|6
0(0(1]2|3|4|5|6 0(0|{0|0|0|0|0O|O
111]12|3|4/5|6|0 11011123/ 4(5|6
212(3|4|5/6|0(1 2(0|2|4|6|1|3|5
313(4|5|6|7|1|2 310(3|6|2|5|1|4
414|5|/6(0[1|2]3 4(0|4|11|5|/2|6|3
5(5(6[{0[1]2]|3|4 510(5[{3|1|6|4|2
6(/6|0{1]2]3|4|5 6(10(6|5[4|3|2|1
From the tables it can be easily verified that Z_ is a commutative
ring with unity 1.
Ans. to Q. No. 4 : Let R be a commutative ring without zero-divisors.
Leta, b, c € Rsuchthata = 0 and ab = ac.
Thenab-ac=0
= a(b-c) = 0, by the left distributive law
= b -c =0, since a # 0 and R has no zero-divisors
=b=c.
Thusa=0,ab=ac = b =c Similarly,az0andba=ca=b=c.
Hence the cancellation laws hold in R.
Conversely, suppose the cancellation laws hold in R and let a,
b € Rsuchthatab =0, a=0.
Then ab = a0, since a0 = 0in R = b = 0, by the left cancellation law.
Similarlyab=0,b=0=a=0.
Thus,ab=0=a=0orb =0 and so R has no zero-divisors.
Ans. to Q. No. 5: |If possible, let 1 and e be two unities in a ring R with
unity.
Then 1e = e, taking 1 as unity.
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Also 1e =1, taking e as unity.
Hence e = 1 and so the unity in R is unique.
Ans.to Q. No.6: LetRbearingwhere 1=0,i.e., the unity and the zero
element are equal. Then x e R= x=1x=0x =0. So, R = {0}.
Ans.to Q. No.7: LetRbearingsuchthata?=a~vaeR.
i) aeR =a+aeR
= (ata)’=a+a
= (at+a)(ata)=a +a
= (a+a)a + (a+a)a = a + a, by the right distributive law
—a’+a’+a’+a’=a+a
= (a+a) + (a+a) = (a+a) + 0
= a + a = 0, by the left cancellation law in (R, +)
= 2a=0.
i) a,beR=a+beR
= (atb))=a+b
= (atb)(atb)=a+b
= (atb)a+ (atb)b=a +b
—a’+bat+tab+b?=a+b
—a+ba+ab+b=a+0+b
= ba + ab = 0, using cancellation laws in (R, +)
= ba + ab = ab +ab, by (i)
= ba = ab, again by the right cancellation law.

Thus ab = ba +a, b € R and so R is a commutative ring.

9.7 FURTHER READINGS

1. Modern Algebra — S. Singh & Q. Zameeruddin.
2. A course in Abstract Algebra — V. K. Khanna & S. K. Bhambri.

9.8 MODEL QUESTIONS

Q.1. Show that G = {a + b¥3 : a, b € Q} is a commutative ring with

unity under usual addition and multiplication of numbers.
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Q.2. Define @ an = is Z as follows :
a®b=a+b-1,a*xb=a+b—-abforalla,b e Z.
Show that (Z, @, *) is a commutative ring. Find the unity of this
ring, if it exists.
Q.3. LetRx R ={(a, b):a, b e R}. For (a, b), (c, d) € RxR, define
addition and multiplication by (a, b) + (¢, d) = (a+ ¢, b + d) and
(a, b)(c, d) = (ac — bd, ad + bc)
Show that R x R is a commutative ring with unity.
Q.4. Give examples of :
i) A commutative ring with unity
i) A non-commutative ring with unity
iii) A commutative ring without unity
iv) A non-commutative ring without unity.
Q.5. Give examples of :
i) A finite commutative ring with zero-divisors

ii) A finite commutative ring without zero-divisors.

a b
Q/6. Show that R = {(0 0):a:b EZ} is a non-commutative ring

without unity.

Q.7. Give an example of a non-commutative ring R
such that (ab)? = a?b? for all a, b € R.

Q.8. Prove that a ring R is a commutative ring if and only if
(atb)? =a?+ 2ab +b2foralla, b € R.

Q.9. LetF bethe setof all functionsf: R — R. Forf, g € F, let us define
f+g and fg as follows :
(f+g)(x) = f(x) + g(x) »x € R
(fg)(x) = f(x)g(x) » x € R.
Show that F is a commutative ring with unity under the above
defined operations.

Q.10. Show that the set of even integers forms a commutative ring

without unity under usual addition and multiplication.
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UNIT STRUCTURE

10.1 Learning Obijectives
10.2 Introduction
10.3 Integral Domain (1.D.)
10.3.1 Definition of an I.D.
10.3.2 Examples of Integral Domains
10.3.3 Necessary and sufficient condition for an I.D.
10.4 Division Rings and Fields
10.4.1 Definition and examples of units in a ring
10.4.2 Definition and examples of Division ring
10.4.3 Definition and examples of Fields
10.5 Properties of I.D. and Fields
10.6 Let Us Sum Up
10.7 Answers to Check Your Progress
10.8 Further Readings
10.9 Model Questions

10.1 LEARNING OBJECTIVES

After going through this unit, you will be able to

® define an integral domain

® learn about the necessary and sufficient condition for a ring to
be an I.D.

® define Division ring and Field

® learn about basic properties of I.D. and Field.

10.2 INTRODUCTION

In the preceding unit we defined zero-divisors in a ring and we come
across rings with or without zero-divisors. This leads us to a special kind of

ring called Integral domain. Similarly, existence of multiplicative inverses of
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non-zero elements in a commutative ring with unity leads to a special kind
of ring called Field. In this unit we shall discuss Integral domain and Field

and know some basic properties.

10.3 INTEGRAL DOMAIN (1.D.)

Before defining an I.D., let us recall zero-divisors in a ring discussed
in the preceding unit.
A non-zero element ‘a’ of a ring R is called a zero-divisor if there

exists another non-zero element ‘f in R such that ab = 0.

10.3.1 Definition of an I.D.

A commutative ring with unity in called on Integral Domain
(1.D.) if it has no zero-divisors.

Alternatively, a commutative ring R with unity is called an
I.D.ifforalla,fe R,ab=0=a=0.

10.3.2 Examples of I.D.

Example1:Z,Q, R, C, i.e., the ring of integers, the ring of rational
numbers, the ring of real numbers and the ring of complex numbers
under usual addition and multiplication are all Integral domains
since.
i) all these are commutative rings with unity 1,

and, ii) for any two elements a, b in each of these rings,

ab=0=a=0o0rb=0.

All these are infinite 1.D’s.
Example 2: Z = {0, 1, 2, 3, 4, 5}, the ring of integers modulo 6 is
not an I.D. even though it is a commutative ring with unity 1.

Because 2, 3 € Z,, both non-zero; but2® 3 =0,as 2.3 =6

leaves the remainder 0 when divided by 6. Thus Z_ has zero-divisors.
Example 3 : Zp ={0,1, 2, ...., p — 1}, the ring of integers modulo p

isan I.D., if p is a prime.
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NOTE : In some books,

an I.D. is simply defined

as a commutative ring
without zero-divisors.

The existence of unity is

not taken into
consideration.

But most of the infinite
commutative rings
without zero divisors
have unity. Also, every
finite commutative ring
without zero divisors
contains the unity.
Because of these two
reasons, we have
definedan . D.tobea
commutative ring with
unity and without zero-
divisors.

We already know that Zp is a commutative ring with unity 1.
Leta,b e Zp such thata ® b =0. Then

plab
= plaorplb, since pis a prime
= a=0orb=0,sincea,b<p
Thusa®b=0=a=0orb=0and hence Z has no zero-

divisors. Consequently, Zp is an I.D.

10.3.3 Necessary and Sufficient Condition for I.D.

Theorem 1 : A commutative ring with unity is an I.D. if and only if
the cancellation laws hold in it.
Proof : Let R be a commutative ring with unity 1.
Suppose R is an |.D. Then R has no zero-divisors.
Leta, b, c € Rsuch thatab =ac, a=0.
Thena(b-c)=0 = b-c=0,
since a # 0 and R has no zero-divisors
=b=c.
Thus,ab=ac,az0=b=c.
Similarly, ba=ca,az0=b=c.
Hence the cancellation laws hold in R.
Conversely, let the cancellation laws hold in R.
Then fora, b, c e Rand a#0.
ab=0
= ab=a0 [.-a0=0]
= b =0, by the left cancellation law.
Thusab=0,a=0

=b=0
Similarlyab=0,b =0
=a=0

Hence R has no zero-divisors and so, R is an I.D.

This completes the proof.
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10.4 DIVISION RING AND FIELD

Let us consider the ring of integers Z and the ring of real numbers
R under usual addition and multiplication. In Z, only =1 and 1 have

multiplicative inverses. In R, every non-zero element has a multiplicative

1 1 1 1
inverse, viz,ifae Rand a#0,then —e Rand —.a=1=a.—,i.e., — is
a a a a

the multiplicative inverse of ‘a’in R. Thus, R is different from Z with respect
to existence of multiplicative inverse of non-zero elements. Similarly, we
shall find non-commutative ring with unity when every non-zero element
has multiplicative inverse. This leads us to the definition of new classes of

rings, such as Division Rings and Fields.

10.4.1 Definition and Examples of Units in a Ring

Definition : Anon-zero element a of a ring R is called a unit if there
exists on element b is R such that ab = ba = 1. In this ease, b is the
multiplicative inverse of a in R.
In other words, a non-zero element of a ring is called a unit
if its multiplicative inverse exists.
Examples : 1) In Z, only -1 and 1 are units.
2) InQorRor C, every non-zero element is a unit.
3) InZ, =1{0,1, 2, 3, 4, 5, 6}, the ring of integers
modulo 7 under addition and multiplication modulo
7, we can easily find
1®1=1,2®4=1,3®5=1,6 ®6 =1.

Hence, every non-zero element of Z, is a unit.

10.4.2 Division Ring

Definition : A ring with unity is called a division ring or a
skew field if every non-zero element is a unit.
Alternatively, a ring with unity is called a division ring if every

non-zero element has multiplicative inverse.
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NOTE : An integral
domain is generally
denoted by D. Similarly,
a field is generally
denoted by F.

Examples: 1) Therings Q, R, C are division rings.

2) Z, 2Z etc. are not division rings.
3) LetR={a+bi+cj+dk:a,b,c,d eR}

Where i, j, k are just three abstract symbols which

can be multiplied by the following rules :

i2=j2=k2=lijk=-1,

ij=—-jk=k, jk=-kj=1i, ki=—ik =

It can be proved that R is a ring under addition

and multiplication with

0=0+0i+0j + Ok as the zero element and

1=1+0i + 0j + Ok as the unity. It is a non-

commutative ring since ij # ji.

Now, letqg=a + bi + ¢cj + dk € R.

Then q # 0 = atleastone ofa, b, ¢, dis non-zero.

= a?+b?+c?+d?*=0

a—bi-cj—dk

eR
a?+b?+c?+d?

So,q'=

It can be easily shown that

qq'=1=q'q, i.e,qg'=q".

Hence, every non-zero element of R is a unit an
so R is a division ring.

This ring is called the Ring of Real Quaternions.

10.4.3 Fields

Definition : A commulative division ring is called a field.

Alternatively, a commutative ring with unity is called a field

if every non-zero element has multiplicative inverse.

Obviously, the non-zero elements of a field form a

multiplicative group. Hence, we may also define a field as follows :

A commutative ring R with unity is called a field if (R—{0}, .)

is a group.

Examples : 1) Q, R, C are all fields
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2) Zis notafield since non-zero integers except -1, 1
have no multiplicative inverses.

3) The ring of real quaternions
R={a+bi+cj+dk;a,b,c deR}is not a field,
since it is non-commutative.

4) Zp ={0, 1, 2, ..., p—1}, where p is a prime, is a field

under addition and multiplication modulo p.

10.5 PROPERTIES OF I.D. AND FIELD

The basic properties of |.D. and field are the following :
1) The cancellation laws hold in an I.D.
2) Every field is an I.D. and,
3) Every finite I.D. is a field.
1) has been proved in 10.3.3 Theorem 1. We shall now prove 2)
and 3) in the following theorems.
Theorem 2 : Every field is an I.D.
Proof : Let F be afield. Then F is a commutative ring with unity and
every non-zero element of F has multiplicative inverse.
Leta, b € Fsuchthata=0.Thena' e F.
Nowab=0 = a'(ab)=a"0
= (a'a)b=0
=1b=0
=b=0
Thusa=0,ab=0=b=0
Similarlyb=0,ab=0=a=0
Hence F has no zero divisors and so F is an |.D. This completes
the proof.
Theorem 3 : Every finite integral domain is a field.
Proof : Let R be a finite I.D. and so R is a commutative ring with
unity. To prove that R is a field, it is enough to show that every non-zero
element of R has multiplication inverse.

Since R is finite, we can take R={0,1,a,,a,...,a}.
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Let a be a non-zero elementof R, i.e.,a=0.Ifa=1,a"'=1.

So, We take a = 1. By closure property.

R'={a1,aa,aa, ...aa)cR

Since R has non-zero divisors, all the elements of R’ are non-zero.
Moreover, the cancellation laws hold in R and so for i # j,

aa, = aa, = a, = a, a contradiction.

This shows that all the elements of R’ are distinct.

Thus R’ has (n+1) distinct non-zero elements and so

R=R-{0}={1,a,a, ..,a}

Hence, 1 e R" = 1 =aa, for some a R

The commutativity of R shows that aa, =1 =aa

Hence a™" exists and a™' = a.

Thus every non-zero element of R has multiplicative inverse, which

completes the proof.

[ [ LA ]
a A/
C /

7Y CHECK YOUR PROGRESS

A\

Q.1. Give an example to show that every I.D. is not a field.

Q.2. Ifpisaprime, prove that Zp, the ring of integers modulo p is
a field.

Q.3. Give an example to show that Z , the ring of integers modulo

n is not a field if n is a composite number.

Q.4. Show that a field has no zero-divisors.
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T_Kg 10.6 LET US SUM UP
® An . D.is a commutative ring with unity and without zero-divisors.
® A commutative ring with unity is an I.D. if and only if the cancellation
laws hold in it.
® A non-zero element of a ring is called a unit if its multiplicative
inverse exists.
® Aring with unity is called a division ring if every non-zero element is
a unit.
® A commutative division ring is called a field.
® Every field is an |.D., but the converse is not true.
® Every finite I.D. is a field.
‘{ 10.7 ANSWERS TO CHECK YOUR PROGRESS
Ans. to Q. No. 1: The ring of integers Z in an 1.D., but not a field.
Ans.to Q. No.2: Zp ={0, 1, 2, ...., p—1}, p is a Prime. Clearly Zp is a
commutative ring with unity 1. It is finite as it has p elements.
Suppose a® b =0fora, b e Z.
Then plab
= plaorplb, since pis prime
=a=0orb=0,since0<a,b<p
Thusa®b=0=a=0orb =0, showing that Zp has non-zero
divisors. Hence Zp is a finite integral domain and so, it is a field
Ans.to Q.No.3: ConsiderZ,={0,1,2,3,4,5,6, 7}, the ring or integers
modulo 8, where 8 is a composite number.
Here, 4 ® 6 = 0 whereas 4 =0, 6 #0.
Thus Z, has zero-divisors and so it cannot be a field.
Ans. to Q. No. 4 : See proof of Theorem 2.
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., 10.8 FURTHER READINGS

1. A course in Abstract Algebra— V. K. Khanna & S. K. Bhambri.
2. Modern Algebra— S. Singh, Q. Zameeruddin.

1 10.9 MODEL QUESTIONS

Find out the units of Z, = {0, 1, 2, 3, 4, 5, 6, 7}, the ring of integers

modulo 8. Isiitan |. D.? Is it a field?

Z, Z
Q.2. Show that M, the set of all 2 x 2 matrices of the type (_21 Z_zj
2 1

where Z,, Z, are complex numbers is a division ring, but not a
field.

Q.3. ShowthatR={a+ bﬁ :a, b € Q}is a field under usual addition
and multiplication.

Q.4. Let R be the set of real numbers. Show that R x R forms a field
under addition and multiplication defined by
(a,b)+(c,d)=(a+c,b+d)

(a, b).(c, d) = (ac — bd, ad + bc)
[Hints : additive identity is (0, 0), multiplicative identity is (1, 0)

)
If (a, b) # (0, 0), then (a, b)"' = | 2 T2

a’+b?’ a?+b?

Q.5. Write true of false :
i) Every field is a ring.
i) Every ring has a multiplicative identity.
iii) Every ring with unity has atleast two units.
iv) Multiplication in a field is commutative.
v) The non-zero elements of a field form a multiplicative group.
vi) Every division ring is a field.
vii) Every integral domain is a field.

Q.6. Prove that Z is not a field, if n is a composite number.
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UNIT STRUCTURE

11.1  Learning Objectives
11.2  Introduction
11.3  Definition of Matrix
11.4  Types of Matrix
11.5 Equality of Matrices
11.6  Addition of Matrices
11.6.1 Properties of Matrix Addition
11.7  Multiplication of a Matrix by a Scalar
11.7.1 Properties of Multiplication of a Matrix by a Scalar
11.8  Multiplication of Matrix
11.8.1 Properties of Multiplication of Matrices
11.9 Transpose of a Matrix
11.10 Symmetric and Skew-Symmetric Matrices
11.11  Canonical Form of Matrices
11.12 Let Us Sum Up
11.13 Answers to Check Your Progress
11.14 Further Readings
11.15 Model Questions

11.1 LEARNING OBJECTIVES

After going through this unit, you will be able to

® define a matrix

® describe about types of matrix

® |earn about the matrix operations i.e. addition, subtraction and
multiplication

® define transpose of a matrix.

Discrete Mathematics 169



Unit 11

Matrices

11.2 INTRODUCTION

Matrix is one of the most powerful tools in modern mathematics.
They provide an algebraic structure slightly different from that of real
numbers. The method of solving linear equations becomes easy with the
help of matrices. Moreover, matrix notation and operations are used in
computer graphics programming and implementation of electronic
spreadsheet programs. They are widely used in modern algebra, applied
mathematics, atomic physics, mathematical problems of economics as well
as in computer science also. In this unit, we will introduce you to the
fundamentals of matrix. We shall also discuss about the various types of

matrices along with matrix operations.

11.3 DEFINITION OF MATRIX

A matrix is an ordered rectangular array of numbers.

A set of ‘mn’ numbers (real or complex) arranged in the form of a
rectangular array having ‘m’ rows and ‘n’ colums is called an mxn matrix
(to be read ‘m’ by ‘n’ matrix).

An mxn matrix is usually written as :

a11 a12 a1n
321 a22 aZn
a31 a32 a3n
A=
_am1 am2 amn B

In a compact form the above matrix is represented by
A=[a], i=1,2 ., ...m

=12 ..,..,n
Or simply as A= [aij]

mxn

We write the general elements of the matrix and enclose it in

brackets of the type []or (). The numbers a_, a_,, ..., etc. of this rectangular

117
array are called the elements or entries of the matrix. The element a; belongs
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to the i row and j column and is sometimes called the (i, j) element of
the matrix.

We denote matrices by capital letters such as A, B, C, etc. The

following are some examples of matrices : %
— T T =

2 1
A= 3 5} is a 2x2 matrix i.e. it has 2 rows and 2 column, |NOTE : A matrix having

m-rows and n column is
called a matrix of order
3 2 0 } mxn or simply mxn

whose elements are 2, 1, 3, 5.

is a 2x3 matrix. Whose elements are 3, -2,

1 4 -5 matrix (read as mby n
014 _5 matrix). In the example,
T the matrix A is of order
1-i 3 2/ 2x2, B is of order 2x3
3 .
27 1 1 and C is of order 3x3.
C= is a 3x3 matrix.

V2 5 4

11.4 TYPES OF MATRIX

Now, we are going to discuss about the different types of matrices.
i) Row Matrix : Any 7xn matrix which has only one row and n columns

is called a row matrix. e.g.

A=[4 6 -3 \/E 0] is a row matrix of order 1x5.

In general, A= [a1j]1><n is a row matrix of order 7xn.

ii) Column Matrix : Any mx1 matrix which has m rows and only one

column is called a column matrix. e.g.
1

B = 3 is a column matrix of order 3x1.
5

In general, B = [L‘l,1]mX1 is a column matrix of order mx1.

iii) Square Matrix : A matrix in which the number of rows are equal to
the number of columns is called a square matrix.
An mxn matrix for which m = n (i.e. the number of rows are equal to
the number of columns) is called a square matrix of order n. For

example,
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1 2 -1
1
2 £ is a square matrix of order 3.
3 0 -
In a square matrix A = [aij]nxn, the elements a,,, a,,, ..., a_ are called

the Diagonal Elements.
Diagonal Matrix : Asquare matrix B =[b,] . is said to be a diagonal
matrix if all its non-diagonal elements are zero, that is a matrix B =

[0,]. 1S said to be a diagonal matrix if b, = 0, when i = j, e.g.

2 0 0

10
A{o 3] 5.0 3 0
00 -1

are diagonal matrices of order 2, 3 respectively.
Scalar Matrix : A square matrix in which all the diagonal elements
are equal and other elements are zero is called a scalar matrix.

Thus, the square matrix A = [aij]mxm is a scalar matrix if

a;= 0 whenj#janda,=a,=..=a_=a (say).
-1 0 O
-2 0
e.g.A=[0 2] =0 -1 0
B O 0 1

are scalar matrices of order 2 and 3 respectively.

Identity Matrix : A square matrix in which the diagonal elements
are all 1 and rest are all zero is called an identity matrix.

Thus, a square matrix A = [aij]mxm is an identity matrix if

a; = 17 wheni=j

a; = 0 whenj#j.

An nxn identity matrix is denoted by | . Thus

10 0
|=FO}|=O1O
* 01 "o o 1

are identity matrices of orders 2, 3 respectively. An identity matrix
isalso called a unit matrix. If there is no scope for confusion regarding

the order of an identity matrix, then it is simply denoted by I.
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vii)

Null Matrix or Zero Matrix : A matrix of order mxn whose elements
are all O is called a null matrix (or Zero matrix). It is usually denoted

by 0.

o ool o o

are all zero matrices of orders 1x2, 2x1, 2x2 respectively.

11.5

EQUALITY OF MATRICES

Two matrices A = [aij] and B = [b”.] are said to be equal if :

they are of the same size or order.

the elements in the corresponding places of the two matrices are
equal i.e.,

a;= b, foralliandj.

If two matrices A and B are equal, we write A = B. If two matrices A

and B are not equal, we write A = B. If two matrices are not of the same

size, they cannot be equal, e.g.

1 2 1.2 3
3 4) 74 5 6)
y] [-15 0

a 2 J6

iF|% 2=
b ¢ 3 2

Thenx=-15,y=0, z=2, a= /g, b=3,c=2

4

A\

N\

CHECK YOUR PROGRESS

Q.1. If a matrix has 12 elements, what are the possible orders it

can have?
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Q.2. Find the values of a, b, ¢ and d from the following equation.

2a+b a-2b 4 -3
5¢c—d 4c+3d| |11 24

2 5 19 -7

2 5
Q.3. InamatrixA= 35 -2 /2 12
743 1 -5 17

Find i) the order of the matrix,
ii) the number of elements,

i) write the elements a_,, a,, a

13 7217 73% a24’ a23'

11.6 ADDITION OF MATRICES

Suppose A and B be two matrices of the same order mxn, then
their sum, denoted by A+B, is defined to be the matrix of the order mxn
obtained by adding the corresponding elements of A and B.

Thus, if A= [aij]mxn and B = [bij]mxn, then A+ B = [aij + bij]

The resultant matrix should be of the order of mxn.

mxn

a; Ay . ... A
Ay, Ay e ... Ay,
More clearly, if A=
_am1 am2 amn_mxn
b11 b12 b1n
b, b, b,,
and B = ,
_bm1 bm2 - bmn_mxn
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a, +b, a,+b, .. .. a,+b,
a, +b,, a,+b,, .. ... a, +b,,
thenA+B =
|8 tbn A +b, oA+ bmn_mxn

Again, if, Aand B are two matrices of order mxn, then the difference
‘A —B'’is obtained as A— B =A + (-B), where —B is obtained on multiplying
all the elements of B by —1.

It follows that A—B =[a,—b/] ...

whenever A = [aij]mxn and B = [bij]mxn.
. 15 3 6
Example : Given A = 0 3 and B = 17|
find A+ B and A — B.

1+3 5+6 4 11]
Solution: A+ B = =

0+1 3+7] = [1 10,
151, 43 6] _[1 5],[3
A-B=A+(B) =g 3 1 7)o 3] |1 -7

[1+(=3) 5+(-6)] [-2 -1]
T10+(-1) 3+(-7)] |1 -4

1-3 5-6 -2 -1
In short, A—B = 0-1 3-7 = 1 -4

11.6.1 Properties of Matrix Addition

The addition of matrices satisfy the following properties :
i) Commutative Law : IfA = [aij], B = [bu] are matrices of the
same order, say mxn, thenA+B =B + A
Now,A+B =[a]+[b]=[a, +b]
=[b,+a,] (addition of numbers is commutative)
= [b] * [a)]
=B+A
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ii) Associative Law : For any three matrices A= [aij], B= [bij],
C= )] of the same order, say mxn,
(A+B)+C=A+(B+C)

Now, (A+B)+C =(la] + b)) + [c]
=[a, + b, +[c]
=[(a; + b) + ¢}
=[a, + (b, + c,)]
=[a] + (Ib] + [c,)
=A+ (B +C)

ili) Existence of Additive Identity : If 0 be the mxn zero matrix
and A= [a”.] be an mxn matrix, then
A+0=[a, +0], =[a],,=A
also,0 +A=[0+ aij]mxn = [a”]mxn =A
In other words, the null matrix plays the role of additive
identity in the set of all mxn matrices.

iv) Existence of Additive Inverse : LetA=[a be any matrix.

i
ijdmxn
Then we have another matrix A = [-a] ., such that
A+(-A)=(-A)+A=0

So, —Ais the additive inverse of A or negative of A.

xn?

a b a -b|
Example : IfA= b 3 and B = b a find A + B.

a b

_ i a -b
Solution: A+ B __—b a + b a

[a+a b-b 2a 0
—b+b a+a| |0 2a

10 0 3 3 5
Example : If A= 3 4 ,B= 5 5 ,C= 6 4|

Show that (A+B)+C=A+ (B +C).

_ 10 0 3 1+0 0+3 1 3
Solution: A+ B = 3 4 + 5 5 = 3.9 445 = 5 9
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1 3] [3 5] [1+3 3+5] [4 8
SAFBIYC =15 9l tle 4|7 (546 3+4| |11 13
| 0 3] [3 5] [0+3 3+5] [3 8
Again,B+C =15 5|*|6 4| |2+6 5+4]7|8 9

1 0] [3 8] [1+3 0+8] [4 8
FATBrCI=13 4T |8 9| |3+8 4+9] 7|11 13

. (A+B)+C=A+(B+C).

11.7 MULTIPLICATION OF A MATRIX BY A SCALAR

Multiplication of a matrix by a scalar is defined as follows :

IfA= [aij]mxn is a matrix of order mxn and k is a scalar, then kA is an
another matrix which is obtained by multiplying each element of A by the
scalar k.

In other words, kA = k[aij]mxn = [k.aij]mxn

i.e. (i, j)"" element of kA is ka, for all possible values of i and j.

1T 1 1
For example, if A = 0 3
-1 2

then 2A=
3 -1 2| |6 2 4
11 1]
11 o 2 2 32
1 1. 0 =
1A=—2 0 3|_ 2
2 3 1 2| |3 1 |
12 2 i

Conversely, if all the elements of a matrix have a common factor,

then that common factor can be taken out. For example,

aa ob ab
ac ad| %*c d
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11.7.1 Properties of Multiplication of a Matrix by a Scalar

IfA= [aij] and B = [bij] are two matrices of same order, say
mxn and k and / are two scalars, then the following are true.
i) k(A+B)=kA+kB
i) (k+HA=KA+IA
i) k(IA) = (kDA
iv) (—k)A =k(-A)
3 2
1 4

1 0

_3 2] then find the

Example:IfY=[ :|and2X+Y=|:

matrix X.

10
Solution : We have 2X +Y = {_3 2}

(1.0 1 0] [3 2
22X =13 2|73 2|71 4
(1-3 0-2] [-2 -2
“|-3-1 2-4|7 |4 -2

1[-2 -2 -1 -1
:»x=2__4 o aX=| L,

0 2 3 4 6 -3
Example : IfA= ,B= , then find the matrix

2 1 4 1.0 -2

X suchthat2A-3B-X=0
Solution : We have 2A-3B-X=0
X =2A-3B

J0 23] J46 -3
2 1 4 10 -2
0 4 6] [12 18 -9

|4 2873 0 -6
[0-12 4-18 6-(-9)

| 4-3 2-0 8-(-6)

[-12 14 15
1 2 14
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11.8 MULTIPLICATION OF MATRICES

Two matrices A and B are conformable for the product AB only
when the number of columns of A is equal to the number of rows of B.
LetA=[a],.,i.e. Ais of order mxnand B = [b,] .- i.e. B is of order nxp.
Then the product AB of the matrices A and B is the matrix C of order mxp,

i.e.

Where, ¢, = a b, +ab, +a.b, +.. .. +

C = [Cik]mxp n %
ainbnk = zaij'bjk -
i=1
It means, the (i, k)" element c, of the matrix C = AB is obtained by [NOTE :
1) The product AB of
two matrices A and B
exists if and only if

the number of

multiplying the corresponding elements of the " row of A and the k™ column
of B and then adding the products. The rule of multiplication is row by

column multiplication i.e. in the process of multiplication we take the rows

of A and the columns of B. columns in A is equal
In the product AB the matrix A is called the prefactor and the matrix to the number of
B is called the post factor. rows in B.
2) If A be of order mxn
3 and B be of order
Example : IfA=|>|andB = [1 0 4] find AB. Also find BA. nxp, then C = AB is
2 defined and will be of
order mxp.

Are they equal?

Solution : Here, the matrix A is of order 3x1 and B is of order 1x3.

Since the number of columns in A is equal to the number of rows in B, so

the two matrix will be comformable for the product AB. The resultant matrix %

will be of order 3x3.

3 3x1 3x0 3x4 3 0 12 NOTE : Matrix

_|5 _15x1 5x0 5x4|_|5 0 20| |multiplication is not
AB B [1 0 4] - - commutative i.e. for two

2 2x1 2x0 2x4 2 0 8 ] )
matrices A and B which
Again, Bis 1x3 and Ais 3x1. Here, column number in B is equal to |5re comformable for

the row number in A. The resultant matrix will be of order 1x1. multiplication, AB = BA.
3
BA = [1 0 4] 5. [1x3 + 0x5 + 4x2] = [11]
2
.. AB = BA.
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2 1 3 0 2
Example: I[fA= 10 and B = 1 —2 3 find AB.
Can you find BA?

Solution : Here, matrix A is of order 2x2 and matrix B is of order

2x3. Number of columns in matrix A is equal to the number of rows in B, so

the product AB is defined and the resultant matrix will be of order 2x3.

2 173 0 2

AB=11 0l|1 =2 3
[2x3+1x1 2x0+1x(-2) 2x2+1x3
" [1x3+0x1 1x0+0x(-2) 1x2+0x3

[6+1 0-2 4+3 7 2 7
13+0 O 2+0| |3 0 2

Since number of columns of B is not equal to the number of rows of
A, the product BA is undefined.

11.8.1 Properties of Multiplication of Matrix

The multiplication of matrices possesses the following
properties :
i) The multiplication of matrices is not always commulative :

a) Whenever AB exists, it is not always necessary that BA
should also exist.

b) Whenever AB and BA both exist, it is always not
necessary that they should be matrices of the same
order.

c) Whenever AB and BA both exist and are matrices of
the same order, it is not necessary that AB = BA.

1 0 0 1
For example, if A= [0 _J and B = [1 0}
then we can show that AB = BA although both AB, BA
exist.

d) It however does not imply that AB is never equal to BA.
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1 2 1
For example, if A= 3 42 and
1 3 2
10 4 -1
B = -5 0 , we can show that AB = BA.
9 -5 1
i) Matrix multiplication is associative i.e. A(BC) = (AB)C
where A, B and C are matrices of order mxn, nxp and pxq
respectively.
iii) Matrix multiplication is distributive with respect to addition
of matrices i.e. A(B + C) =AB + AC
where A, B and C are matrices of order mxn, nxp and nxp
respectively.
iv) For every square matrix A, there exist an identity matrix / of
same order such that, Al = IA=A.
[ A
Z "\ A
= ¥ CHECK YOUR PROGRESS

2 5

2{)7( ysz? _ﬂ=[175 164}

7 0 3 0
Q4. Find XandYifX+Y= and X-Y = 0 3|

Q.5. Find the values of x and y from the following equation :
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3 1

1 2] show that A2—5A + 71 =0.

Q.6. IfA= [

Q.7. Using examples, show that A(BC) = (AB)C.

Q.8. Using examples, show that A(B+C) = AB + AC.

11.9 TRANSPOSE OF A MATRIX

Let A=[a], ., be a matrix of order mxn. Then the matrix obtained
from A by changing its rows into columns and columns into rows is called
the transpose of A and is denoted by the symbol A’ or AT.

ie.ifA= [aij]mxn then A’ = [bij]nxm, where bu = a,

i.e. the (i, j)" element of A’ is the (j, i)" element of A.

4

1 9 7
For example : IfA = 4 3 5 ,then A’ =

1
9 3
7 5
Some important properties of transpose of matrices are given
below :
1. The transpose of the transpose of a matrix is the matrix itself i.e. if
Ais a matrix of order mxn, then (A") = A.

2. If Ais matrix of order mxn and k is a scalar, then (kA)" = kA’
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3. IfAand B are two matrices suitable for addition, then

(A+B) =A’ + B’
4. |f Aand B are two matrices such that AB is defined, then
(AB) = B'A’
2 4 6
Example 1:IfA= 3 5 7 show that (A’) = A.
2 3
2 4 6 4 5
Solution : We have A = 3 5 7 LA =
6 7
2 4 6
Now (A') = 3 5 7 =A
Hence (A’) = A

1 2 4 5 1
Example 2 : IfFA = 3 4 ,B= 6 7 -1)

then show that (AB)' = B'A".

4 6
1 3
Solution : A’ = ( j B = 5 7 ,
2 4
1 -1
4 6 16 36
1 3
and so B'A’ = 5 7 (2 4 = 19 43
1 -1 -1 -1

1 2\(4 5 1 16 19 1
Also AB = =

3 4)l6 7 -1) (36 43 -1
16 36

- (aBy=|19 43 Thus (AB) = B'A.
1 -1

11.10 SYMMETRIC AND SKEW-SYMMETRIC MATRICES

1. Symmetric Matrix : A square matrix A= [aij] is said to be symmetric
if A= Aie. [aij] = [aji] for all possible values of i and j, its (i, j)"

element is the same as its (j, /)" element.
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1 2 3
The matrix A = 2 47 is a symmetric
3 7 6
1 2 3
ForA’ = 4 7. A
3 7 6
1 i =2
2 7 _
) [ 2 4 . ,
% Examples : 7 3| are symmetric matrices.
—— -2 4 3

NOTE :

i) A square matrix A is
said to be
symmmetric if A = A’

ii) A square matrix A is
said to be skew-
symmetric if

iii) The diagonal
elements of a skew-
symmetric matrix are
all zero.

. Skew-Symmetric Matrix : A square matrix A= [aij] is said to be skew-

symmetric if A’ = —A that is a;=-a, for all possible values of i, j.
In particular, for j = j, we have a,=-a,=>2a,=0=a,=0

Thus, the diagonal elements of a skew-symmetric matrix are all

zero.
0 a b
A=|2 0 -c is skew-symmetric
-bc O
0 -a -b 0 a b
for A’ = | @ 0 c|_--a 0 - =-A
b -¢c 0 -b ¢ O

0 -3i 4 0 h g
E .13 0 8 -h 0 f ,
xamples : , are skew-symmetric
4 8 O -g -f O

matrices.

11.11 CANONICAL FORM OF MATRICES

Definition 1 :
ECHELON MATRIX : A matrix A is called an echelon matrix, or is

said to be in echelon form if :

i) any zero rows, that is rows with all elements zero, are on the bottom

of the matrix.
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ii) the first non-zero entry, called the leading entry in a row, occurs to

the right of the leading non-zero entry in the preceding row.

12 -3 2 1 4 3
4 20| |0 1 3 -2

Example : The matrices ,
0O 0 O 0O 0 4 5

are echelon matrices.
Definition 2 :
ROW CANONICAL FORM OF MATRIX : A matrix Ais said to be in
row canonical form if :
i) Ais an echelon matrix,
i) each leading non-zero entry in a row is 1,
iii) each leading non-zero entry is the only non-zero entry in its column.

A matrix in Row Canonical Form is also called Reduced Echelon

Matrix.
10 5 0 2
01 3 0 5
Example : Thematrix |0 O O 1 6 | isinrow canonical form
0O 00 0O
12 3
0O 0 1
where as the matrix [0 O 0| is not in row canonical form.
0 0O

Any given matrix can be reduced to row canonical form with the
help of some operations performed in its rows. These are called Elementary
Row Operations which we state below.

ELEMENTARY ROW OPERATIONS : The following are called
elementary row operations or a matrix A = [aij]mxn with respective symbols :

i) Interchanging the i"" row and the j" row : R, <> R..
i) Multiplying the i"" row by a non-zero scalar k : R, — kR.
iii) Replacing the i" row by adding to this row k times the j row :

R— R +kR.
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EQUIVALENT MATRICES : If A and B are two mxn matrices, then
B is said to be row-equivalent to A if it can be obtained from A by a finite
number of elemantary row operations. This row-equivalence is then denoted
byA _R , BorbyA~B.
It can be shown that A~B< B~A
A~B,B~C=A~C.

Example 1 : Using elementary row operations, show that

1 0 -1 1 1 0 -1 1

B= -1 1.0 2 is row equivalent to A = 2 10 1.

0 3 0 5 -11 0 2
10 -1 1 1 0 -1 1
Solution: A = 2 1.0 1 10 3 05 ,
11 0 2 -1 1 0 2

by R, > R, + 2R,

1 0 11
-1 1 0 2 :B,bsz(_)R3
0O 3 0 5
Thus A~ B.
1 -2 3 1
Example 2 : Reduce the matrix A = 2 12 2
3 1 2 3
to echelon form.
1 -2 3 1
Solution: A = 2 1.2 2
3 1 2 3
1 -2 3 1
0 3 4 4
= ,byR, - R, -2R,R, > R,-3R
0 7 -7 6 2 2 1 Ny 3 )
1 -2 3 -1
o 4 4 e ko
o 0 7 -1
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1 -2 3
ThusA ~ 0 3 4 4 which is in echelon form.
O 0 7 -10
01 3 -2
] _ 1 4 3
Example 3 : Reduce A= to echelon form.
3 2 1
01 3 =2
Solution: A = 2 1 -4 3
2 3 2 -1
2 1 4 3
101 3 -2 byR, &R,
2 3 2 -1
2 1 4 3
|01 3 2 ,byR, > R, - R,
0 2 6 -4
2 1 4 3
o ,byr, >R, - 2R,
0 0 0 O
2 1 4 3
Thus A ~ 01 3 -2 which is in echelon form.
0O 0 0 O
1 2 3 4 5
2 3 4 5 6
Example 4 : Reduce the matrixA=|3 5 6 7 4
4 7 10 13 16
to row canonical form.
12 3 4 5
2 3 4 5 6
Solution:A =|3 5 6 7 4
4 7 10 13 16
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1
0
~l0 -1 -3 -5 -11|, byR, > R,-2R,,
0 -1 2 -3 -4 R,»R,-3R,R,>R,-4R,

1 2 3 4 5
0O 1 2 3 4

~/10 -1 -3 -5 -11|,byR, > (-1)R,
o -1 -2 -3 4
10 -1 -2 -3
01 2 3 4

~|0 0 1 -2 -7|,byR,->R,+R,R, >R, +R,
00 0 0 O
1 0 -1 -2 -3
01 2 3 4

~10 0 1 2 7| byR,—>(-1)R,
0 0 0 0 O]
1 0 0 0 4 ]
010 -1 -10

~10 01 2 7 |,byR,»>R,-2R,
000 0 0|

Which is in row canonical form.

Example 5 : Reduce to row canonical form :

1 -2 3 1 2
11 4 13

A=
2 5 9 -2 8
1 2 3 1 2
Solution: A = T 1.4 13
2 5 9 -2 8
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1 23 1 2
0 3 1 -2 1
~ ,byR, >R -R,R >R —2R
_0 9 3 _4 4_ 2 2 1 3 3 1
1 2 3 1 2]
~103 2 TR SR -3R,
0 0 0 2 1]
1 23 1 2
03 2 1 byR >R
~ ) — /2
000 1 A7 ’
I 2
-2 3 3
2
0 3 2
“1o 0 o 1,byR1—>R1—R3,R2—>R2+2R3
I 2
1 2303
2
0 1 Lo 2 1
~ 3 ?,bszﬁng
00 0 1 =
i 2]
f Mg 1T
3 6
0 1 1+ o 2
~ 3 51’) ,byR, >R, +2R,
00 0 1 5

Which is the row canonical form of A.

_Kg 11.12 LET US SUM UP

T

® A rectangular array of mn numbers, arranged in m-rows and n-
columns and enclosed in a square [ ] or a round bracket (), is

called a matrix of order m by n (denoted by mxn).
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The numbers occuring in a matrix are called the elements of a matrix.
The element a, appearing in the i" row and the j" column of A is
called the (i, j)"" element of A.

A matrix with exactly one column and any number of rows is called
a column matrix. The order of a column matrix is of the type mx1.
A matrix with exactly one row and any number of columns is called
a row matrix. The order of a row matrix is of the type 7xn.
Amatrix A= [a] . is asquare matrix if m = n.

The square matrix [aij] is a diagonal matrix if a; = 0 fori=j.

o for i=j

The square matrix [aij] is a scalar matrix if a; = {O for i%]

1 for i=j
The square matrix [aij] is a unit matrix if a;= {0 for i%]
It is denoted by / or /.
A matrix in which each element is zero is called a zero matrix or a
null matrix, denoted by 0.
Two matrix are said to be equal if and only if they are of the same
order and their corresponding elements are equal.
If A and B are two matrices of the same order, then their sum,
denoted by A + B, is the matrix obtained by adding the corresponding
elements of A and B.
Commutative property of addition. For two matrix A and B, A+B =
B+A.
Associativity of addition : (A+B) + C = A + (B+C)
Existence of additive identity :A+0=0+A=A
Existence of additive inverse : A+ (-A) = (-A) +A=0
Scalar multiplication of matrix : A= [aij]mxn = kA= [k.aij]mxn
a) k(A+B)=kA +kB
b) (k+hDA=KkA +IA
c) Kk(/A) = (khA
d) (-k)A =k(-A)
IfA=[a],.,andB=[b,] . thenAB=C=[c] ..
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n
where ¢, = Zaijbjk

j=1
Matrix multiplication is not commutative in general, i.e. AB = BA.
Matrix multiplication is associative, i.e. (AB)C = A(BC).
Matrix multiplication is distributive over addition,
i) A(B+C)=AB +AC
i) (A+B)C =AC +BC
If Ais a square matrix and / is an identity matrix having the order
same as Athen Al = /A= A.
If A= [aij]mxn, then A’ or AT = [bji]nXm where bJ.i =a, is called the
transpose of A.
Matrix A is called a symmetric matrix if A’ = A.
A is skew symmetric matrix if A’ = —A.
A matrix A is in echelon form if :
i) any zero rows are on the bottom of the matrix.
i) The first non-zero entry, called the leading entry in a row occurs
to the right of the leading non-zero entry in the preceding row.
A matrix A is said to be in row canonical form if :
i) Ais an echelon matrix,
i) each leading non-zero entry in a row is 1,
iii) each leading non-zero entry is the only non-zero entry in its
column.
Elementary row operations are :
i) interchanging any two rows : R, <> Rj
ii) multiplying a row by a non-zero scalar : R, —» kRj
ii) replacing the i row by adding to this row k times the j* row :
R —> R +kR.
Two matrices A and B are row-equivalent, denoted by A ~ B, if B

can be obtained from A using finite sequence of elementary row

operations.
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{11.13 ANSWERS TO CHECK YOUR
s PROGRESS

Ans. to Q. No. 1: We have already discussed that if a matrix is of order
mxn, it has ‘mn’elements. Now to find all possible orders of a matrix
with 12 elements, we will find all ordered pairs of natural numbers,
whose product is 12. Thus, all possible ordered pairs are :

(1,12), (12, 1), (2, 6), (6, 2), (3, 4), (4, 3)
Hence, possible orders are :
1x12, 12x1, 2x6, 6%2, 3x4, 4%3.

Ans. to Q. No. 2 : Byequality of two matrices, equating the corresponding

elements we get 2a+b=4 a-2b=-3
5c-d=11 4c +3d =24
Solving these equations we willgeta=1,b=2,c=3,d=4

5
Ans. to Q. No. 3: i) 3x4; i) 12; iii) 19, 35, -5, 12, 5

7 0 30
Ans.toQ.No.4: Wehave X+Y = 5 &5 , X=Y= 0 3

Adding the two, we get

7 0 30
X+¥*+X=Y=12 5/"|0 3
7+3 0+0
2+0 4+3

17110 0] [5 0
=X=%12 8|71 4

7 0
Now, X +Y =

:>2X=[

2 5
7 0]
=Y = 2 5 -X
(7 0 5 0
=lo 5|71 4 [Putting the value of X]
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7-5 0-0 2 0
“l2-1 5-4|7 (1 1
5 0 2 0
sX=lg 4 Y=

2x 5 _+3 -4 7 6
Ans. to Q. No.5: We have, 7 y-3|"[1 2 =15 14

[2x 10 3 4] [7 6
=114 2y-6|"|1 2| |15 14
2x+3 10-4 | [7 6
T (1441 2y-6+2] " [15 14

[2x+3 6 7 6
~1 15 2y-4] 7|15 14
=>2x+3=7and2y—-4=14
=2x=7-3and 2y =14 +4

418
=x=7andy= "3
L X=2andy=9
3 1
Ans.to Q. No.6: We have A= 4 2
'3 1][3 1 9-1 3+2
2 = - _
NowA*=AA=|_4 2| |1 27 |-3-2 —1+4
(8 5
|5 3

J3 1]_[15 5
A= 1 2|7 |5 10
1 0] [7 0
=7 =
T ="0 1} {o 7J
8 51 [15 51 [7 0
. 2 —_
LA2-BA+7] = 5 3|~ |-5 10 + 0 7
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(8 5] [-15 5] [
5 3|75 -10]7|

|-5+5+0 3-10+7

Hence, A2 - 5A + 71 = 0.

Ans.to Q. No.7: TakeA= [

3

4
215}B=_12
13 2| 5 1

Clearly AB, BC are defined and we get.

AB =

BC =

Now,

4

2 1 5| °
132j_12=(15 15]
o 1] 14 12

3 4
1
1 2( 1
2 1N
(2
A(BC) = | 1
K
(AB)C =

1 5
3J= 3 -5
- 1 5
-1 5
150 5 5 _{o 30
3 2_ 1 5 8 0

5 151 3 0 30
4 120-1 1]~ |-8 ©

Thus A(BC) = (AB)C.

Ans. to Q. No. 8 :

Take A =

1 1

0 1
0 1 ,B=[2 JandC=[
2 3 -

Clearly AB, AC, B+C and A(B+C) are defined.

B+C =

K

PR

[8-15+7 5—5+0} i

|

2
-1 0
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1 1 -2 2
0 1
Again, AB = 0 1 {2 ,J -2 -
2 3 B 6 -1
1 -1 2 2
1 2
AC:01[10}=—10
2 3| -1 4
-2 2 2 2] [o 4
~AB+Ac=[2 TP O T
6 -1 |-1 4] |5 3

Thus A(B+C) = AB + AC.

. 11.14 FURTHER READINGS

1. Matrix Algebra, S. K. Jain, Eastern Book House.
2. Matrices, A. R. Vasishtha, Krishna Prakashan Mandir, Meerut.

Y& |11.15 MODEL QUESTIONS

(2 3 4 -1
Q.1. IfA= and B = find A - 3B.

-3 2 1 4
2 1 -3 2 5 2
Q.2. IfA=__1 3 ,B= 4 1 and C = 1 3|

Verify the following : i) A+B=B+A ii)2(A—B)=2A-2B
X2 1 2x 3 3 4
Q.3. Solve for x, 5 3 + 1 4|13 7

-1 4 1 -1
Q.4. Findxandy if x-2y = 3 1 and 2x-y =

2 3
1 -2 3
_ 14 4
Q.5. IfA—{_4 ) 5} and B = ) 1

find AB and BA and show that AB = BA.
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2 -2
= i —A2
Q.6. IfA 3 4 find —A? + BA.
1 2
Q.7. IfA= 2 1| show that A2— 2A = 3.
2 -3 5
Q8. IfA= -1.4 5 , show that A2 = A
1 -3 4
6 9
= 2=
Q.9. IfA 4 _g) show that A2 = 0.
Q.10. If nis any positive integer, show that

n
nx
—sinX cosXx

Give examples to show that, (A+B)' = A’ + B’, (AB) = B'A'.

Q.11.
Q.12.

COS X

Si

cosnx sinnx

[— sinnx cos nx}

If A be a square matrix, show that :

i) AA’is symmetric matrix.

i) A+A’is symmetricand A— A’ is skew-symmetric.

ii) A is the sum of a symmetric and a skew-symmetric matrix.

Q.13.

i)

1
2
3

2
-3 6
1

2
4
6

Reduce to echelon form :

3 0
2 2
4 3

-2 2 1
0o -1
-7 10 2

Q.14. Reduce to row-canonical form :

1
0
0

2
0
0

2

o b

-3 0 1
5 2 -4
0O 7 3
-1 6 4
1 10 13
0 20 19
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UNIT STRUCTURE

12.1
12.2
12.3

12.4
12.5

12.6

12.7
12.8
12.9
12.10

Learning Objectives

Introduction

Determinant of a Square Matrix

12.3.1  Minors and Cofactors of Elements of a Matrix

12.3.2 Determinant of a Diagonal Matrix and that of Identity
Matrix

12.3.3 Determinant of Product of two Matrices

Adjoint of a Square Matrix

Inverse of a Square Matrix

12.5.1 lllustrative Examples on Inverse Matrices

12.5.2 Finding Inverse by Elementary Row Operations

Rank and Nullity of a Matrix

12.6.1 Finding Rank by Elementary Row Operations

Let Us Sum Up

Answers to Check Your Progress

Further Readings

Model Questions

12.1 LEARNING OBJECTIVES

After going through this unit, you will be able to

know about determinants of a square matrix, minors and
cofactors of elements of a matrix

define adjoint of a square matrix and know how to find it
define inverse of a square matrix

find inverse of a square matrix provided it exists

define rank and nullity of a matrix

find rank using definition and using elementary row operations.
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NOTE : Let F be a field
and M _(F) be the set of
all square matrices of
order n with entries from
the field F. Then M_(F) is
a non-commutative ring.
We can define a
mapping from M _(F) to F
such that the image of
A= (a),., € M (F)is the
determinant of A, i.e., |A|
e F
M (F)—>F

A— |A|
Thus, the determinant of
a matrix can be
considered as a
function.

IfA= (a11)1x1
then [A| =]a,| = a,,

12.2 INTRODUCTION

One of the important topics in Algebra is that of solution of a system
of linear equations. The system is expressed in matrix form as a single
equation in matrices. To determine the existence of solution of the system,
the concept of rank of matrix is necessary. Also the concept of inverse of a
matrix is used to find the solution set. In this unit, we shall learn about the
inverse of a matrix and rank and nullity of a matrix. For this purpose the
concept of determinant of a square matrix and that of adjoint of a square

matrix is necessary which will be discussed at the beginning of the unit.

12.3 DETERMINANT OF A SQUARE MATRIX
Ay )
1) LetA= [321 azj be a 2x2 square matrix.

We define its determinant, denoted by detA or |A|, as

A a11‘>J,<’5‘12
= . =a,a a.a
dy 8p

11%2 7 912921

It is called a determinant of order 2.

. 1 2 1 2
For example, if A= 2 3 , than |A| = 9 3~ 1.3-2.(-2)=7

d;p Qi Qg
= |92 Ay Ay i i
2) IfA= be a 3x3 square matrix, its determinant,
ds; Qg Ay
dyy Qg Qg
a a a . .
|A] = |72 722 723/ is given by
a31 a32 a33
|A| a a22 aZ3 _ a21 a23 aZ1 a22
= dq1 12 13
Az QAg a4 33 ds Ay
= a11(azza33 - azsa32) - a12('3216133 - azsa31) + a13(az1a32 - azza31)

198

Discrete Mathematics



Determinant-I

Unit 12

a11 a12 a13
a a a
Ingeneral, |A|] =|72" 722 72
a31 a32 a33

= (-1 )ManlAnl + (-1 )i+zai2|Ai2| + (-1 )i+3ai3|Ai3|

Where Aij represents the 2x2 matrix obtained on deleting the i" row
and j" column of A(i, j = 1, 2, 3).

Similarly, |A| = (—1)1+‘a1j|A1j| + (—1)2*J'a2j|A2j| + (—1)3+ja3j|A

This determinant is called a determinant of order 3.

3j|

1 2 -1
For example, if A= 2 0 3 , then
-2 1 4
1 2 1
2 0 3
|A| =
-2 1 4
0 3 2 3 2 0
=1 -2. +(-1).
1 4 -2 4 -2 1
= 1.(0-3) — 2(8+6) — 1.(2-0)
=-3-28-2=-33

Similarly, we can define the determinant of a square matrix of order
4.5, ...,n.

12.3.1 Minors and Cofactors

IfA= [aij]nxn be a square matrix, then the determinant of the
(n=1)%(n—1) matrix A, obtained on deleting the i row and j*" column
of Ais called the minor of a, i.e., minor of a, = |A],

where AU. is the (n—1)%(n—1) matrix as defined above.

The cofactor of a; denoted by Cij, is defined as

C, = (=1)" x minor of a, = (=1)"]A|.

Example 1 : Find minors & cofactors of the elements of

A [aﬂ a12]
dy1 8y
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Solution : The minorofa_ is|A | =la,|=a,,
The minor of a,, is [A,,| = |a,,| = a,,

The minorof a,, is |A,,| = |a,| =a,

The minor of a, is |A,| = |a,| = a,,
So, the cofactors are
C,==1"A,l=a,
C,=1"A| =-a,
C,, = 17"A,l = -a,
sz = (-1)*?A,,| = a,,
Clearly |A| = G Bz
a21 a22
=a,a, —a,a,
=a,C, +a,C,
Similarly, |A| = a,,C,, +a,,C,,
=a,C, +a,C,
=a,C, a22C22
Alsoa,C, +a,C,=a,(-a,) +a,a, =0, etc

Example 2 : Find the cofactors of the elements of

Ay 8 8y

A=|B21 8 8
Az Az QAg

Solution : C = (-1)"*'[A_| P
olution: C = (-1)" =
" a32 a33
C ( 1)1+2|A | a21 a23
2 12 a31 a33
C 1 1+3A a21 a22
3 (_ ) | 13| - 631 332 , etc.

Clearly, |A|=a,C,, +a,C, , +a,C,, et
Also, we can show thata, C,, +a,C,, + a13C23 =0, etc.
We can summerize the fmdmgs in examples 2 and 3 in the

following property.
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Property : 1) The sum of the products of the elements of any row
(column) and the corresponding cofactors of the
row (column) is equal to the value of the determinant.

2) The sum of the products of the elements of any
row (column) and the cofactors of the correspond-
ing elements of a different row (column) is equal

to zero.

12.3.2 Determinant of a Diagonal Matrix

LetA=]|... ... ... ... ...|beadiagonal matrix of order n. Then

|A| =a,C,+a,C_+..+a C

11 12712 1n " 1n

=dC,,asa,=..=a, =0

= d1 ae
0 0 0 ..d,
d, 0 0 0
0 d, 0 0
= d1d2
0 0 0 ..d
=d,d,d, ...d_

As a corollary, we get |l | =1.

12.3.3 Determinant of Product of Two Matrices

ab a B
IfA= c d and B = v 8 then |A| = ad - bc, |B| = ad — By
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- |AlB| = (ad-bc)(ad—By)
= adad + bcPy —adpy — bcasd .......... (1)
ao+by ap+bd
Also AB = ca+dy cB+dd

- IAB| = ca+dy cp+dd

ao+by ap+ bS‘

= (aotby)(cp+dd) — (ap+bd)(co+dy)
= adad + bePy — adpy — bcas ......... (2)
From (1) & (2), we get |AB| = |A|.|B]|

In general, ifA= [aij] andB = [bij]nxn be two square matrices

nxn

of same order, then |AB| = |A|.|B|.

12.4 ADJOINT OF A SQUARE MATRIX

Definition 1: LetA=[a] , be a square matrix of order n. Then the
adjoint of A, denoted by adjA, is the transpose of the matrix of the cofactors

of the corresponding elements of A.

‘a,, a, .. a, |
a,; dy ... a,,
Thus, if A=
_an1 an2 ann_
_C11 C12 C1n ] C11 CZ1 Cn1
Co1 Cp .o Gy Cpp Cxp - Cp
thenadjA=| ... ... ... .. |=
_Cn1 Cn2 Cnn_ C1n CZn Cnn
10 -1
Example 3 : LetA= 21 -
1 2 5
17 1 2 -1
Then, C =(-1)""2 5|=7 C,=(-1)"?1 5|=-1
2 1 0 1
Co=C1"11 2/=3 C,, =12 5|=-2
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1 -1 10
C22 = (_1 )2+2 1 5 = 6 C23 = (_1 )2+3 1 2
0 1 1 _1
C31 = (_1 )3+1 1 1= 1 C32 = (_1 )3+2 2 _1
10
C;33 = (_1 )3+3 2 1= 1
Ci1 Gy Cyy 7 -2 1
~adja=|C%2 C2 Cx |- -1 6 -1
Ciz Cz Cg 3 -2 1

Theorem 1 : If A be an nxn square matrix, then
A(adjA) = |Al | = (adjA)A.

Proof : LetA = (a)),.,-

Then adjA = (bu)

nxn’

Now, the (i, j)" element of A(adjA) = Zaikbkj
k=1

= Zaiijk
k=1
|A], ifi=]
10, ifizj
[Al 0 0 .. O
0O |Al O ... O
Hence, A(adjA) =
0O 0 O |A|
1 0 O 0
0 10 0
=Al]... ...
0 0O 1
= Al

Similarly, (adjA) = |Al.l
Thus, A(adjA) = |A] | = (adjA)A.

where b, = C,, the cofactor of a,.
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12.5 INVERSE OF A SQUARE MATRIX

Definition 2 : Let A be a square matrix of order n. If there exists
another square matrix of order n such that AB = | =BA, thenAis said to be
invertible and B is called the inverse of A and it is denoted by A-".

Thus, AA" =1 =A"A

2 7 a B
Example 4 : LetA= 1 4 , Suppose B = v 8 such that

AB =1 =BA
20+7y 2B+78 10
| a+dy PB+45| |0 1

= 20+7y=1, 2B+75=0,
o+ 4y=0, B+45=1
= a=4,p=-7,y=-1,0 =2 [on solving the equations]

4 7
-1 = =
Hence A B [_1 2 }

Theorem 2 : The inverse of a matrix is unique.
Proof : Let A be an invertible matrix and suppose both B and C are
inverses of A. Then AB =1 =BA, AC =| =CA.
- B =BI

= B(AC)
= (BA)C
=IC
=C

Hence the inverse of A is unique.

Theorem 3 : If A, B are invertible matrices, then

) (A=A
i) (AB)"'=B"A"
Proof :

i) Since Ais invertible, we have

AA- = | = A'A
= AA=1=AA"
= (A=A
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i) We have AA"' =1 =A-'A, BB~ = | = B-'B
Now (AB)(B-'A-") = A(BB-")A""
=AIA
= AA- = |

Similarly (B'A-")(AB) = |
Thus (AB)(B-'A') = | = (B"'A-")(AB)
— (AB)'=BA".

Definition 3 : SINGULAR AND NON-SINGULAR MATRIX
Asquare matrix Ais called a non-singular matrix if |A| = 0, otherwise

A is called a singular matrix.

10 1
Example 5: LetA= 2 1 - . Then
1 2 5
10 1
2 1 1
Al =
1 2 5

1.(5+2) — 0.(10+1) — 1(4-1)

As |A] =0, so Ais a non-singular matrix.

4

1 2 3 1
1 2 3 1
4

1l
o

Take B = . Then |B| =
4 0 5

S NN
a W »

So, B is a singular matrix.

Theorem 4 : The inverse of a square matrix exists if and only if it is
non-singular.

Proof : Let A be a square matrix.

Suppose A" exists. Then

AAT =1 =A"A
= |AAT = 1] = |ATA|
= [ALIAT=1
= |A|#0

= Alis non-singular.
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NOTE : Every matrix is
not invertible, only
square matrices may
have inverse matrices.
All square matrices are
again not invertible. Only
those square matrices
whose determinant are
non-zero, that is, those
square matrices which
are non-singular, are
invertible.

Conversely, suppose A is non-singular. Then |A| = 0.
Now, by Theorem 1 we know
A(adjA) = |A] | = (adjA)A

1
A(adjA) = I = {51 (adiA)A, as |A] % 0

1 1
A —adJA] = | = (_adJA)A
- (|A| A

1
Hence A" exists and A~' = made

1
A

This completes the proof of the theorem.

12.5.1 lllustrative Examples on Inverse of Matrices

2 5 3 -5
Example 6 : Show thatA= 13 and B = 1 9 are inverses

of each other.

_ 2 5Y(3 -5 10
Solution : We have AB = 1 31l 2 = 0 1 =

3 -5)(2 5 10
BA:(—1 2)(1 3}=£o J =
Thus AB =1=BA, and so
A'=B,B"= (A=A
Example 7 : Examine the existence of inverse. If exists, find inverse
of the matrix.

' -2 6
i) A= 3 -9
) 3 5
i) A= 2 3
10 -1
i) A= 2 1 -
1 2 5
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Solution :
-2 6
i) A= 3 -9 =(-2)(-9)-6.3=18-18=0
Since A is a singular matrix, A~' does not exist.
3 5
ii) |A|=2 3=9—10=—1
Since |A| # 0, Ais a singular matrix and so A~ exists,

1 1
where A" = 7 adjA = 7y adjA = —adjA.
|A] 297 (1)@ :
NowC, =3,C,=-2,C, =-5C,=3

! !

C11 C12 3 -2 [ 3 _5}
s adjA = = =
_Cz1 C22 -5 3 -2 3

3 -5 -3 5
AT = — =
A= __2 3 - 2 _3
1 0 —1]
i) A= 2 1
1.2 5]
1 0 -1
IA| = 2 1 -1 _ 1.(5+2) - 0.(10+1)-1(4-1)=4
1 2 5

Since |A] # 0, A" exists and

1 1
A" = ——adjA = —adjA

|Al 4
-2 1
1 1 6 -1

= 4| ~ |, [see Example 3, 12.4]

3 -2
(71 1]
4 2 4
s 1
| 4 2 4
s 11
4 2 4 |

Discrete Mathematics

207



Unit 12 Determinant-|

12.5.2 Finding Inverse by Elementary Row Operations

Finding inverse of a square matrix by elementary row

NOTE : Inverse of a

square matrix can be operations is based on a theorem stated below (without proof).
obtained by two Theorem 5 : If a square matrix A of order n is reduced to | by
methods :

successively performing elementary row operations, then the same

1) Using the formula . : »
successive elementary row operations reduces | to A~

Al = — adiA Thus, if we perform successive elementary row operations
A2

for which |A] and

adjA should have to
enumerate. It should be noted that in performing elementary row

on (Al ) which reduces Ato | , then the resulting matrix is (I_| A™).
In symbol, (A1)~ (I | A™).

2) Using elementary operations on (A | I), if we get a zero-row in the A-part, then A does
row operations which
does not necessitate
finding |A| and adjA.

not reduce | and in such case A-' does not exist.
ILLUSTRATIVE EXAMPLES :

Example 8 : Find inverse matrix using elementary row operations :

10 -1 1 0 2
)A_21—1 ii)B=2—13
1 2 5 4 1 8
1 1 2 1 )
2 11 2 13 4
i) c=|-1 2 1 2| 1w b=[1 2
P11 3 13 -6
Solution :
10 <11 0 0
. 2 1 -10 10
i) (All) =
12 5(0 0 1
1 0 111 0 0
01 1/-2 10
~ ,byR, > R-2R; R, > R-R
026—101 2R213 3 1
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10 111 0 0
01 1|2 1 0 R e
00 1|3 1 1pWR2YR
I 4 4
' 71 1]
1.0 0| 4 2 4
0 oY 3
~10 0 1] 3 . YR > R#R, R, > RR,
I 4 2 4]
~ (1A
711
4 2 4
‘s 1
G- 4 2 4
and hence, A E _1 1
4 2 4
1 0 2/1 0 0
ii)(B|I)=2 13/0 10
4 1 8/0 0 1

~ ,byR, > R,~2R, ;R, > R,4R,

,by R, R +2R,; R, R R,

1
O -1 04 0 -1
O 0 146 11
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], by R, > (-1)R, ; R, » (-1)R,

0O 0|11 2 2
0

1

1
-1

|

2
1
-1

2

11
4 0
6

—1

!

and hence, B'

10 00
210
-2/0 0
0 0O

0
0

1

0

-1

2

-1

1

-110 0 O

1
1

-1

|

R, > R,—2R,R, > R+R,R, > RR,

1

-2 -1 -2|-1 0 0 1

0

i) (C|1) =

0 0
0 O
1 ’

0

1
3
0
0

1

R, —)—ng

0

1

1
2
3
1

-1

1

0

2

1

3

-1

1
1

3
-2

-1
-2

0

o O O -

o O v O

™

N

[Ksp!
_

—|ON[OT ~ ™

~

- O |
~ ~

o

0 0O

1
0

q

~

(@)

o

~

R, »R-R, R, »R-3R, R, >R +2R,
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o

o

1_31_32_3

o

o

~
o
7
Rs
o

0

1

-1

—|OoN[O— oY

1
I

o

— ™

o~ |~ |~

1
_

o

~—

o

N~

~

(@)

~

~

T
_

~

o

0 0O

™

o

o

N

o

~

o

A

~

~

0 0O

(@)
(@)
l§

R, »>R-R, R, >R-R,R, > (-1)R,

T« o

[q\] ~
N
47_38_31_
o O O -
o O v« O
o - o
- O o

~|10 0

1
D P mo
© ™
o ©o 9 9
N 0 ™
— N~ T
PR~ o
N |
1_3
I
TT - o
AN
© N
47_38_34

and hence, C'

R, >R~R,R, > R-3R,

411 0 O

-110
—6/0 O

3
5

1
1

3 13

0

1

1

0

4

0 2 3

0

1
1

—1

-3 0

0 4 6

iv) (D)
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13 4|1 0 0
B L N,
00 01 -2 1

Since the D-part on the r.h.s. has a zero-row, the given matrix

is not invertible, i.e., D' does not exist.

1 V]
|

L
N\

@ 7

A\
N\

CHECK YOUR PROGRESS

Q.1. Find the adjoint of the following matrices :

-2 3 2 -1 1 1 1 2 3
. 6 1 3 N 2 1 1| .. 12 3 5
i) if) ii)

4 0 1 5 -2 -1 1 65 12

Q.2. Forwhat values of x the following matrices are not invertible?

2 —x 3

i) (2 X] i) o 1 -
x 8 x 0 1

Q.3. If Abe a non-singular matrix and B, C are matrices of same
order such that the product AB, AC exist and AB = AC, then
prove that B = C.
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Q.4. Find A~'using adjA:

1
1 4
i) A=(2 7] i) A= f

Q.5. Find A" using elementary row operations :

2 3 2 1 2 2
) A<|6 0 3 i) a=|2 36
4 1 1.1 7

12.6 RANK AND NULLITY OF A MATRIX

Definition 4 : MINORS OF A MATRIX

LetA=[a] ., be agiven matrix. Let r be a natural number which is
less than or equal to the minimum of m, n. By deleting (m-r) rows and (n—
r) columns from A, a square matrix of order r can be obtained which is
called a square sub-matrix of A. The determinant of this square sub-matrix

is called a Minor of the matrix A of order r. For example,

1 2 0 4
i A = 2 -1 1 0 ;
3 1 -2 1
1 2 1 4 2 1
then 2 _10'|3 1l'|3 2|’ etc. are minors of order 2.
2 0 4 1 0 4
Similarly, -1 10 and 2 1.0 are minors of order 3.
-2 1 3 -2 1
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NOTE : Rank and nullity
of a matrix are used in
solving a system of
linear equations.

Definitions 5 : RANK AND NULLITY OF A MATRIX

LetA=[a],., be a given matrix. If all minors of order (r+1) are zero
while at least one minor of order r is non-zero, then r is defined as the rank
of the matrix A, generally denoted by p(A).

If A= [a,],., be a square matrix of rank r, then (n-r) is called the
nullity of A, generally denoted by t(A). Thus

p(A)=r=1t(A)=n-r

where n is the order of the square matrix A.

If A= 0, then A has atleast one non-zero entry and so, atleast one
non-zero minor of order 1. Hence, A= 0 = p(A) > 1

If A= 0, it has no non-zero entry and so, p(A) = 0.

Example 9 : Find rank and nullity of :

4 2 -2 3
12 - 2 5 -4 6
i) A= 2 -1 1 i) A=|-1 -3 2 -2
3 11 2 4 -1 6
1 2 -4 3
i) A= 2 135
_—1 8 6 -1
Solution :

i) A has one minor of order 3 which is |A|.

1 2 -1

Now Al =2 1 1 = q1-1) - 20-3) —1(2+43) = -5
3 1 1

Thus |A] = 0 = p(A) = 3, t(A) = 3 - 3 = 0.

ii) Let us first evaluate the minors of order 3 :

1 2 -4

2 1 3 -4 (6+24) - 2(-12-3) — 4(16-1) = 0
-1 8 -6

1 2 3

2 =1 51 4 (1-40) = 2(-2+5) + 3(16-1) = 0
-1 8 -1
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ii)

1 -4 3

2 -3 5|_ 1.(3+30) + 4(—2+5) + 3(-12-3) =0
-1 -6 -1

2 4 3

—81 —2 51 = 2(3+20) + 4(1-40) + 3(6+24) =0

Thus all minors of order 3 are zero and so p(A) < 3.

1 2

But 2 _1

‘ = -1 -4 = -5, showing that A has atleast one non-

zero minor of order 2. Hence, p(A) = 2.
Since A is not a square matrix, its nullity is undefined.
The highest order minor is of order 4, which is

1 2 -2 3

2 5 -4 6
Al =-1 -3 2 -2

2 4 -1 6

1.0 0O

2 1 00

=-1 -1 0 1,
2 0 30

using C,— C,~2C,, C, > C,+2C,, C, - C,—3C,

1.0 0
=10 N oqi0-3==3=0
0 30

< p(A)=4and t(A)=4—4=0.

12.

6.1 Finding Rank Using Elementary Row Operations

we

In example-9 we have seen that to find the rank of a matrix
have to calculate values of a number of determinants, which is

a tedious process. We can avoid it by the application of elementary

row operations on the matrix reducing it to reduced echelon matrix.

This method is based on the following theorem, stated without proof.
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Theorem 6 :

a) The rank of a matrix remains invariant under elementary
row operations.

b) The rank of a matrix is equal to the rank of its reduced
echelon matrix.

c) If a reduced echelon matrix has r non-zero rows, then its
rank isr.

From this theorem, it is obvious that if A~ R where R is the
reduced echelon matrix, and if R has r non-zero rows, then p(A) =
p(R) =r.

8 1 3 6
Example 10 : Find the rank of A = 0 3 2 2
-8 -1 -3 4
Solution : We find the reduced echelon matrix of A performing
elementary row operations :
'8 1 3 6
A = 0O 3 2 2
-8 -1 -3 4
, 1 33
8 8 4
0O 3 2 2 v R 1 R
8 1 3 4|7 g
4 13 3]
8 8 4
2 2
'3 3 1
~ 0 0 10 by R, — §R2, R, = R,+8R,
10 L 2
24 3
2 2
3 3 1 1
~ 0 0 1 , by R1—>R1—§R2, R, — ER3
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o

2 2
,byR, > R-ZR,, R, > Rz—gR3

ooo||\3§|\l

0 1 0
0 0 1

The right hand side matrix is in reduced echelon form having

3 non-zero rows. So, p(A) = 3.

2 3 1 0 4
31 2 -1 1
Example 11 : Find therank of A= |4 -1 3 -2 -2
5 4 3 -1 6
Solution :
(2 3 1 0 4
3 1 2 -1 1
A =4 13 -2 2
5 4 3 -1 6
1 E 1 0 2
2 2
31 2 -1 1
~l4 1 3 -2 2[/R=>%R,
15 4 3 -1 6]
1 E 1 0 2
2 2
1, 5
2 2
~ O _7 1 _2 _10 le_)R2_3R11
o L1 4 4
L 2 2 i
R,—» R~4R,R, > R,-5R,
1 § 1 0 2
2 2
o 1 -1 2 10
7 7 2
~10 -7 1 -2 -10 ,R2—>—7R2
0 —Z - -1 -4
L 2 2 J
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10 2 3 _1
7 7 7
1 2 10
7 7 4 3
“loo o 6 §|R-R3R
00 0 0 1]
7
R, R#7R, R, > R+ SR,
10 2 329
7 7
1 1 2
7 37 1 10
oo 0 0 ofRPR*FR.R5>R-—R,
00 0 0 1]
10 é —E 0
7 7
1 _; ; 0
“loo 0o o 1R
O 0 O 0 O

The right hand side matrix is in reduced echelon form having

3 non-zero rows.
So, p(A) = 3.

A\

A

/

A

Q.6. Find rank of the following matrices using definition :

i)

CHECK YOUR PROGRESS

12 3
2 4 6/

4 1 012 3
3 2 i) 0O 01 -1
1 4 0 00 O
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Q.7. Find rank of the following matrices using elementary row
operations :
1 0 2 1
o 1 -2 1 1136
)1 -1 4 0 i) 13 34
2 2 8 0 5 3 3 M
1 0 2 1
o 1 -2 1
Q.8. Findrankand nullityof| 1 -1 4 0
-2 2 8 0

i _L~ 12.7 LET US SUM UP
\—4H
® IfA=[a].,

A= 3y

ijlnxn”

be a square matrix, its determinant is denoted by det A or

® InA= [aij]nxn, minor of a; = |Aij|, where Au is the (n—1)x(n—1) matrix
obtained on deleting the i"" row and the j" column from A.
® InA=][a],, the cofactor of a, is C, = (-1)".|A].

d 0 0 0
0 d, 0 0

® IfA=|.. .. .. .. .| then|A|=dd, . .d.
0 0 0 d

In particular, [ I |=1,n e N.
® For two matrices A and B, |AB| = |A|.|B]|.
® [fA= [aij]nxn, then its adjoint matrix is adjA = [Cij]’nxn, where Cij is the

cofactor of a,.
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® Asquare matrix Ais invertible if there exists another square matrix B
such that AB =1 =BA. In this case B is called the inverse matrix of A,
denoted by A",

® The inverse matrix A~' of A is unique.

® If A, B are invertible matrices, then (A~")"' = A, (AB)' = B'A".

® A square matrix A is non-singular if |A| = 0, otherwise it is called
singular.

® The inverse of a square matrix exists if and only if it is non-singular.

® For a square matrix A, A(adjA) = |A| | = (adjA)A and hence
A= ﬁade, if A is non-singular.

® The determinant of any square sub-matrix of a given matrix is called
a minor of the matrix.

® [f a matrix A has atleast one non-zero minor of order r and all other
higher order minors are zero, then r is called the rank of A, denoted
by p(A).

® |[f Abe a square matrix of order n and p(A) =r, then n—r is called the
nullity of A, denoted by t(A).

‘[ 12.8 ANSWERS TO CHECK YOUR PROGRESS

-2 3 2
Ans.toQ.No.1:i) A= 6 13
4 0 -1
1 3 6 3
Chi=C1""0 4 =-1 C,=C1)"4 1 =18,
6 1 3 2
C13 =174 o =4 C21 =10 -1 =3,
-2 2 -2 3
C,= (17?4 4 =-6, C,=(-17°|4 of=12
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3 2 2 2
C31 = (_1 )3+1 1 31 7 7’ C32 = (_1 )3+2 6 3 = 18,
-2 3
C,=(1)0%g 1 =-20
C,y C, Gy -1 3 7
Hence, adjA = C, Cy C;|_ |18 6 18

Cs Ch, Cul| |-4 12 —20

i) & iii) Try yourselves.

_ 2 X
Ans.toQ.No.2:i) A= x 8

Ais notinvertible if |A| =0

_ 2 X
i.e., x 8 =0

e, 16—-x2=0
i.e., x =14,
2 —x 3
iy a=(0 1T
x 0 1
2 —x 3
|A|=0 = 0 1 - =0
x 0 1

= 2(1-0) + x(0+x) + 3(0—x) =0

=>x2-3x+2=0

= (x-1)(x-2)=0

=x=1,2

So, Ais not invertible for x =1 and x = 2.
Ans. to Q. No. 3: Since A is non-singular, A-! exists and AA™' = | = A-'A
Now AB = AC = A'(AB) = A"'(AC)

= (A'A)B = (A"'A)C
=IB=IC
=B=C.
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. 1 4 1 4
Ans.toQ.No.4: i) A= 5 7 ,|A|=2 7 =7-8=-1

As |A] # 0, so A" exists.

C11 =7, C12 =-2, C21 =4, sz =1

. 7 -1
adiA=1 o 4

1 117 -4 -7 4
- = — H - — _
Thus, A-' = Al adjA = 1l 11712 _1

= N -
g W N
N bW

1 2 3
2 3 4
Al =
1 5
=1.(21-20) — 2(14—4) + 3(10-3)
=1-20+21=2
1
As |A] # 0, so A" exists and A" = made = YeadjA.
Now C,,=1,C,=-10,C =7
C21 =1, C22 =4, C23 =-3
C,=-1,C,=2,C,,=-1

31 T

1 1 -1
So adja=| 10 4 2
7 -3 -1
] 1 1 -1
Hence, A" = o -10 4 2
7 -3 -1
-2 3 2|1 00
Ans.toQ.No.5:i) (All) = 6 0 3|0 10
1 1 -10 0 1
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23 41
2 2
6 0 3|0
4 1 -1 0
1 .3 4.1
2 2
0 9 9|3
0 7 3|2
I 1
1—§—1_§
2 1
0115
“lo 7 3|23
10 1|0
2|
011§
“l0 0 —4| T
] 3
10 1|
011%
10 0 1] 1
I 12
I 1
1oo$4
010Z
“l0 0 1] 1
I 12
~ (A7)

oWl © o -

©lao| o

|
©|~N

0 1
at R, —» -V%R,
0
1| Re > R6R, R, > R-4R,
0
0 1
1 R2 - —R2
OT
0 3
,R,>R+-R,R, - R-7R,
1
]
0 i
0 1
1 R3 N __Z R3
)
1]
8

4 |,R,»>R-%R, R, >R-R,
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15 1]
AE T 35 9
2 T35 2 118 6 18
andso, A-'=| 4 12 4 | =75 B
o 1 6 14 -18
12 36 4
1 2 2/1 0 0
i apy=|2 3 60 10
1 1 7|0 0 1

RN
N
N
RN
o
o

~ 8 ; gj ; ,R,-> R~2R,R, > R-R,
1 0 6|3 2 0

~ 8 ; _21 ‘52 _13 ,R, > R+2R,,R, > R,—3R,
1 0 6/-3 2 0

033 e

3

00 15 3 -
~(IA™)
27 -16 ©
So, A" = 8 = 2
-5 3 -1

. 1 2 3
Ans.toQ.No.6:i) A= 2 4 6

A has no 3rd order minor.

The second order minors are
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1 3
2 6

2 3

1 2
4 6

2 4 ‘=°

Hence, all 2nd order minors are zero.

But A= 0 and so p(A) = 1.

3 4 1
ii) A= 4 3 2
2 1 4
3 4 1
3rd order minoris |A| = 4 3 2
2 1 4

= 3(12-2) — 4(16-4) + 1(4-6)

=-20 #0
So, p(A) = 3
012 3
ipa=|0 0 1 1
0 00 O

Cleary all 3rd order minors are zero.

1 2
It has a non-zero 2nd order minor 0 1 and so, p(A) = 2.
1 0 2 1
o 1 -2 1
Ans.toQ.No.7:i) A= 1 -1 4 0
-2 2 8 0
1 0 2 1
o 1 -2 1
~10 -1 2 1,R,->R-R,R, »>R+2R,
0 2 12 2
10 2 1
o1 -2 1
~|10 0 0 O,R,—>R;+R,R, > R-2R,
0 0 16 0
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10 2 1
01 -2 1

~|0 0 16 0|, R, &R,

00 0 0]

10 2 1]

01 -2 1 1

~10 0 1 0[.R,> 5R,

00 0 0]

1.0 0 1

010 1

~lo0 0 1 0|,R,>R-2R,R,—R+2R,
0000

The right hand side matrix is reduced echelon matrix with three
non-zero rows. Hence, p(A) = 3.

i) Try yourselves.

1 0 2 1
o 1 -2 1
Ans.toQ.No.8: A=|1 -1 4 0
-2 2 8 0

p(A) = 3 [done in 2(i)]
Hence the nullity of A is given by 1(A) =4 -3 = 1.

12.9 FURTHER READINGS

1. Matrix Algebra, S. K. Jain, Eastern Book House.
2. Matrices, A. R. Vasishtha, Krishna Prakashan Mandir, Meerut.
3. Linear Algebra, Seymour Lipschutz, Schaum’s Solved Problems

Series, Tata McGraw Hill.
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¥& |12.10 MODEL QUESTIONS

Q.1. Find the adjoint of the following matrices

1 2 3 1 -1 1
i) B _Aj i) 050 iii) 2 1
B 2 4 3 5 -2 1
12 3
Q.2. Forthe matrixA= 135 , verify that A(adjA) = |A| | = (adjA)A.
1 5 12
Hence, find A-".
cosa -sina 0
Q.3. Find the adjoint and inverse of sina. cosa 1
0 0 1
3 -3 4
Q.4. Find the inverse of A = 2 3 4 verify that A® = A",
o -1 1
3 -1 4]
. _10 2 1 3 ) _
Q.5. GivenA= , show that A> - 3A2-7A+181=0.
1 -1 -2]
Hence find A"

Q.6. Show that A and B are inverses of each other :

2 5 3 -5
M A=l1 3)B={_1 2

1.0 2 11 2 2
i A=|2 13| g-| 4 0 1
4 1 8 6 -1 —1

Q.7. Find inverse matrix using elementary row operations :

1 2 4 2 4 3
) a=|1 18 i a=[0 1 1
2 7 -3 2 2 1
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-2 0 1
1 2 =2 o 2 2 1
i)y A= 13 0 iv) A=|1 -2 -3 -2
0 -2 1 01 2 1

Q.8.
Q.9.

Q.10.

Q.11.

If Ais o non-singular nxn square matrix, prove that (A")' = (A"
If A and B are two square matrices of order nxn and AB = |, then
show that BA =I.

Find rank of the following matrices using definition :

1 2 3 1 2 3 2
N2 4 1 . |2 3 5 1
i) ii)

-3 -1 2 1 3 4 5

1-V6 V3 2
ii) 2 V6 2

1 3 -6
Find rank using elementary row operations :

(2 -2 0 6

4 2 0 2 5 3 14 4
i) |1 -1 0 3 i) 0 1 2 1

1 2 1 2 1 -1 2 0

i 2 -1 3

4 1 2 1
i) |3 -1 1 2

12 0 1

And find nullity of the matrices (i) and (iii).
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UNIT

13.1
13.2
13.3
134
13.5
13.6
13.7
13.8
13.9

STRUCTURE

Learning Objectives

Introduction

Determinant of order 2

Determinant of order 3

Properties of Determinants

Solution of a Set of Linear Equations by Cramer’s Rule
Let Us Sum Up

Further Reading

Answers to Check Your Progress

13.10 Model Questions

13.1

LEARNING OBJECTIVES

After going through this unit, you will be able to:

define determinant

evaluate determinants of order 2 and 3

use the properties of determinants for evaluation of determinants

solve determinants using Cramer’s rule.

13.2

INTRODUCTION

The concept of determinants is a useful tool in solving system of

linear equations in two or three variables. In this unit,we shall discusss the

concept of determinants.We shall also study many properties of

determinants which help in evaluation of determinants. We may use

determinants to solve a system of linear equations by a method known as

Cramer’s rule.

13.3

DETERMINANT OF ORDER 2

Let us consider the equations g,x+5,y =0 and a,x+b,y=0.
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which is written in compact form as 4

a, b

o, b, =ab,—a,b; =0

In other words, we have

a, b

a b is called a determinant of the second order. It has
2 2

The expression

a b
two horizotal lines @, b, and a, b, and two vertical lines @ b The
2 2
horizontal lines are called rows and the vertical lines are called columns.A
determinant of second order has two rows and two columns.The numbers
a,,b,,a,,b, are called the elements of the determinant. a,b, —a,b, is called

the expansion or the value of the determinant.

1 3 x+1 X x—1 1
Example 5.1: Evaluate (i) o _4 (ii) v x—l (iii) P
. a’® ab
Mgy 52
1 3

Solution : (i) We have

) _4‘ =1(-4)-(-2)3=—4+6=2.

b =(x+1).(x—1)—x.x=x2—1—x2=—1.

(ii)

X x—1

x—1 1

3

. x2+x+1:(x_1)(xz+x+l)_X3

(iii)

3 3
=x"-1-x
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Example 5.2 : Find the value of x if

_ x-3 X 3 ) 2x-1 2x+1_
Wles1 xe3” W i1 dxso|”
x-3 x
Solution : () Wehave| ., 3 = (x=3)x+3)-x(x+1)
:(x2—9)—x2—x
=-x-9
S—x—-9=6
=-x=15
=>x=-15
2x—-1 2x+1
iyWehave | o= (@x=14x+2)-(x+1)2x+1)

=8x" +4x—4x—-2-2x" —x-2x-1
=6x"-3x-3
=3(2x* —x-1)

~3(2xt —x-1)=0

=2x*—x-1=0

o 1++4/14+8

x 5
7

Q 5.3. Solve for x if

x 5

Solution : Given, 7 + ‘: 0
X

= (x*=35)+(1-2)=0
= x> =35-1=0
= x*=36=0

= x’ =36
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=x=16

CHECK YOUR PROGRESS
Q 1: Evaluate :

) 2+\/§ 3+\/ﬁ
(ii) 3—\/ﬁ 2_\/5

2 -3
0 1

Q 2: Solve for x:

o3| px -
Ol a5 «

x 3
4 x

(i1 2% 5

0 —2‘

3 p
Q3:If4 6:6,findthevalueofp.

a+ib c+id
c—id a-ib

Q 4: Prove that =a’+b’ - -d’

13.4 DETERMINANT OF ORDER 3

In 5.3, We have already discussed determinant of order 2. Now, we
think of a determinant which has 3 rows and 3 colums.

Let us consider the equations

ax+by+cz=0 .. (1)
a,x+b,y+c,z=0 .. (2)
and  a,x+b,y+c,z=0 . (3)
X 3 ¥ 3 z

Soving (2) and (3), we get bc

20 —be,  ca3—ca,  aby—ab,
Substituting these proportional values of x, yand zin (1), we get
al(bzc3 —byc, )+ b, (cza3 —Ga, )+ G (a2b3 —a;b, ) =0
which can be written in compact form as
a b ¢
a, b, ¢|=0
a, by ¢

In other words, we have
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a b ¢
a, b, ¢|=q (bzc3 —byc, ) +b, (ascz — Gy ) +¢ (azbs —asb, )

a, by ¢

a b ¢

The expression @ b o is called a determinant of the third order. Since
a, b, ¢

it has 3 rows and 3 columns,it is called a determinant of order 3.
a, (b2c3 —b3c2)+ b, (a3c2 - a2c3)+ G (a2b3 - a3b2) is called the expansion or
the value of the determinant.
Note : A determinant of order 3 has 9 elements.
Value of a determinant :

Determinant of order three can be determined by expressing it in
terms of second order determinants.This is known as expansion of a
determinant along a row (or a column).There are six ways of expanding a
determinant of order 3 corresponding to each of three rows (R,, R, and R,)
and three columns (C,, C, and C,) giving the same value.

Consider the determinant of order 3

a b ¢
a, b, ¢,
a; by ¢

First we expand the given determinant along first row (R,):
Step 1:We mUItlpIy element a, of Rl by (_1)1+1 [ (_ l)position of the element a; ]
and with the second order determinant obtained by deleting the elements

of first row (R,) and first column (C,) as g, liesin R, and C,.

ie. (_1)1+1a1 b, ¢

by ¢
Step 2 : We multiply second element p, of R, by
(= 1) *2 [ (= qypostion oftheclementh ] and with the second order determinant

obtained by deleting the elements of first row (R,) and second column
(C,) as b, liesinR, and C,.
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a, ¢

ie., (-1)7p

a; G
Step 3 : We multiply third element ¢, of R, by (—1)/** [(— [)pestion of theclementer]

and with the second order determinant obtained by deleting the elements of

first row(R,) and third column (C,) as ¢, liesin R, and C,.

e, (17

Step 4 : The expansion of determinant is written as the sum of all the three

a, b,

a, b,

terms obtained in step 1, 2 and 3 above and is given by

a b ¢
m b ¢ 142, |42 G s |4 b,
a, b, ¢ :(—1) a +(—1) b +(—1) c
2 Dy G g | 1 b
3 G a,; G as; b,
a; by ¢

=q (bzc3 —byc, )_ b, (azc3 — a6 ) +¢ (azbs —asb, )
=ab,c, —ab,c, —a,bc, +abc, +a,bc, —a;byc,.

Expansion along second row (R, ):

a b ¢
Consider the determinant |2 2 ©
a; by ¢
Expanding along R,, we get
a b ¢ ) ,
2+1 1 cl 242 al Cl 243 al )
a, b, c=(-1) =l +(=1)"b, +(=1)"¢,
5 G a, ¢ a, b,
a, by ¢

=4, (blc3 —by, )+ b, (azc3 — a6 )_ 5 (ale —a;b, )
=-a,bc; +a,bc, +ab,c,—ab,c, —ab,c, + abc, .
Expanding along C,, we get
a b ¢
a, b, ¢|= (_ 1)1+1 a

a, by ¢

b, ¢,

by ¢

=4q (bzc3 —byc, )_ a, (blc3 —byc, )"’ a; (bICZ —b,¢, )

=a,b,c, —ab,c, —a,b,c, + a,bic, + a;b,c, —a,b,c,
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Similarly, we can expand the determinant along R;,C, and C;.

Note : Expanding a determinant along any row or column gives same value.

1 2
Example 5.4 : Evaluate the determinant | 3
4 1
Solution : Expanding along R, we get
I 2 4
30 -1 0 -1 3
-1 3 0/=1 -2 +4
I 0 4 0 4 1
4 1 0
=1(0-0)-2(0-0)+4(-1-12)
=-52.
1 -2 3
Example 5.5 : Evaluate the determinant A=-2 3 4
I -1 -2

(i) by expanding about any row
(i) by expanding about any column.

Solution : (i) (a) Expanding about the first row
-2 3

‘2){21—1

=1[3(~2)~ (- 4]+ 2[(- 2)(- 2)— (1)4)]+ 3[(-2)(~1) - B)V)]
=—6+4+2(4-4)+3(2-3)
=2-3

=-5
(b) Expanding about the second row

:(_1)(_2){—2 30|t 3‘ 41 —2‘

+3 -
1 -2 1 -1
=2(4+3)+3(-2-3)-4(-1+2)
=14-15-4

=-5
(c) Expanding about the third row

-2 3‘_(_1)11 3

3 4 ~2 4

+3

A=1 +2

I -2
-2 3
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=-8-9+4+6-2(3-4)

=—17+10+2
=-5
(i) (a) Expanding about first column
3 4 -2 3 -2 3
A=1 +2 +1
-1 =2 -1 =2 3 4
=—6+4+2(4+3)+1(-8-9)
=-2+14-17
=-5

(b) Expanding about the second column

A:(—l)(—z*lz j%i _?’JJF(—I)(—I*Iz j

=2(4—4)+3(-2-3)+(4+6)

=-15+10
=-5
(c) Expanding about the third column
-2 3 1 -2 1 -2
A=3 - +(—2)‘ ‘
1 -1 1 -1 -2 3
=3(2-3)-4(-1+2)-2(3-4)
=-3-4+2
=-5
13.5 PROPERTIES OF DETERMINANTS

There are some properties of determinants, which are very much The system of writing

useful in solving problems. Here we are going to discuss the properties only | equations within []is
known as Matrix. We
shall discuss Matrix
Property 1 : The value of determinant remains unchanged if a rows and |algebra in the next
unit.

for the determinant of order 3.

columns are interchanged.

a b ¢ g a aq
a, b, ¢|=|b b, b

a; by ol |l ¢ ¢

i.e.,

Note : If R =ith row and C, = ith column, then for interchange of row and

columns, we will symbolically write C <> R..
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Property 2 : If any two adjacent rows (or columns) of a determinant are

interchanged, then sign of determinant changes.

a b ¢ a, b, ¢
. |la, b, c|=-a, b ¢
ie.,

a, by ¢ a, b, ¢

Note : We can denote the interchange of rows by R, <»R;and interchange
of columns by C, «>C..
Property 3 : If any two rows (or columns) of a determinant are identical (all

corresponding elements are same), then value of determinant is zero.

a b ¢
ie. % b =0
a, by ¢

Property 4 : If each element of a row (or a column) of a determinant is

multiplied by a constant k, then its value gets multiplied by k.

ka, kb, ke, a b

ie. | b, ¢, |=kla, b, c
a, b, ¢ a, b, c

Note :The value of the determinant remains unchanged.by applying R, <>

kR;or C, <>kC, to the determinant .

Property 5 : If to any row(or column) is added k times the corresponding

elements of another row (or column), the value of the determinant remains

unchanged.

a b ¢l |a+ka, b+kb, c +kc,

a, b, c|=| a, b, c,

a, by ¢ as b, G

Note : The value of determinant remain same if we apply the operation R/
< R +kRorC«> C +kC,.

Property 6 : If any row (or column) is the sum of two or more elements,

then the determinant can be expressed as sum of two or more determinants.
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a+d, b+d, c+d)| |ag b ¢ |d d, d,

ie.,, | & b, G |=la, b o|ta, b ¢

a, b, G a, b, c| |y by ¢
lllustrative Examples :

Example 5.6 : Prove that

a b ¢
1 1 1 1 0 0
Solution :| ¢ b ci=la b-a c-a
’ 2 2

a’ b ¢ a’> b*—-a* *-a’
(Apply C, > C,—-C, and C; —»> C;-C())

1 0 0
=(b-a)c—a)a 1 1

a’ b+a c+a

(b-a)c—a)c+a-b—-a)
(b—a)(c—a)(c—b)
(a—bYb—c)c—a).

Example 5.7 : Show that

—_

a b+c
1 b c+al=0
1 ¢ a+b

1 a b+c

Solution:1 b cta

1 ¢ a+b

Apply C; > C,+C,

1 a a+b+c
=1 b b+c+a
1 ¢ c+a+b
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1 a 1
=(a+b+c)l b 1
1 ¢ 1

=(a+b+c).0 (C, and C, are identical)

—0.
1 x -4
Example 5.8 :Find xif |5 3 0|=0,
—2 -4 8

Solution : Expanding by 1st row

1 x -4
3 0 5 0 5 3
5 3 0]=1 —-Xx +(_4
~4 8 ]2 8 —2 -4
~2 -4 38
=1(24)— x(40)—4(-20+6)
=24-40x+56
= —40x +80
= —40x+80=0
=>x=2-
01 O
Example 5.9 : Solve for x if |x 2 x/=0.
1 3 x
01 0
Solution : Given,|x 2 x{=0
1 3 «x
2 x |x x x 2
=0 — +0 =0
3 x |1 x 1 3

= 0—1(x*-x)+0=0
=-x’+x=0

= x(1-x)=0
=x=0,1.
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7 CHECK YOUR PROGRESS

L A
,//é ;‘ / Q 5: Find the value of the following determinants:
i
A‘
- 2 1 -3 4 -1 5
1 -2 1 5 7 3
(a) (b)
2 1 -1 3 4 1
1 -1 2
4 1 1
(c)
5 -1 8

(i) by expanding about any one row
(i) by expanding about any one column.

Q 6: Factorise the determinants and solve the equations :

x  x* X 1 x 2
@[3 9 27|=0 @ x* 3|=0
-1 -2 -3 1 x 4

13.6 SOLUTION OF A SET OF LINEAR EQUATIONS
BY CRAMER'S RULE

Let the system of n non-homogenous linear equations in n-unknowns linear

Ay Xq+aA4p Xg e +a, X, =b; > (1)
Ay Xq+89 Xp Fceeeeens +a,, X, =b, - (2)
a X, +a, X, +....+a, x,= b, - (n)
The system can be written as —
(%, ] b,
ay  ap a,
" X, b,
a21 a22 a2n —
A, 8y e am | |
nxn Xn bn
L Jnx1 L nx1
i.,e.AX=B
Determinant of the co-efficient matrix A
=|Al =D (say)
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Multiplying the equations (1), (2), ....... , (n) respectively by the co-factors
ofa,,a,, - i.e. A;,A, A, and adding we get
Ai(@Xy +a5Xp +- a3 X, )+ Agg(@1 Xy +agXp +-0 85X, )+
+A (@ Xy FapXy + - +ap X, ) =bA +bA, +--+b AL,

= (@11A +a5A + -+ 80 A )X =D Ay +bo Ay -+ b A

= Dx, =D,
Where
Ay Ay eeeeenn a,, b, a;, ... a,,
Ay Ay eeeeen b, ay, ...... a
D= 21 22 2n and D1 — 2 22 2n
Ay A eeennns a,, o J- TP a,,

D, is the determinant obtained from D by replacing the elements of
1st column by corresponding b's

:ﬁzl Provided D =0
D. D

1
Similarly multiplying the equations (1), (2), ............ (n) by co-factors

of the elements of 2nd column of |A] and adding, we get —

a, b,..a,
X2 _1bso
D2
As above we will get
X _X2 =X—”=l D=0
D, D, D, D’

The unique solution of the given system of equation provided D=0 in
the coefficient matrix is non-singular.
i.e. the rank of the co-efficient matrix is n = number of variables.
Note : For a system of n non-homogeneous linear equations with n-

unknowns

241 Discrete Mathematics



Determinant-| Unit 13

Example 5.10 : Solve the equations

3x+y+2z= 3
2x-3y—z=-3
X+2y+z= 4

Using Cramer's rule.

Solution : We have
31 -2
2 - -1
DHA|=
1 1

= 3(=3 +2) — 1(2+1) + 2(4+3)

= 3(=3+2) —1 (=3+4) + 2(-6+12)
= 3-1+12
=8

=3(-3+4)-3(2+1)+2(8+3)
-3-9422-16

D, =

Al\)oo
I\JOO_\

3
-3
4

3 (—12+6) —1(8+3) + 3 (4+3)
= 18— 11 + 21
=-8
ax= 8
D 8
D, _16_,
D 8
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D 8
Example 5.11 : Solve the equations using Cramer's rule:
X+2y+3z =6
3x—2y+z=2
4x+2y+z=7
Solution:
1 2 3
4 2 1 =-4+2+42=40=0

6 2 3
D,=[2 -2 1|= 6(-2-2)-2(2-7)+3(4+14)
7 2 1/=-24+10+54=40

D, =

NN O

3
1
1

A W -

= 1(2-7)-6(3-4)+3(21-8)
= _5+6+39
= 40
1 2 6
D,=[3 -2 2
4 2 7
= 1(—14—4)—2(21-8)+6(6+8)
= _18-26+84
=84 44
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A CHECK YOUR PROGRESS

— Solve the following system of equations by using

A\
LT ]

Cramer's rule :
Q7: 3x + 5y = 8, —x+2y-z =0, 3x—-6y+4z=1

Q 8: X, +X,+X,=7, X,— X, X, = 2, 2X,— X,+ 3X, = 9

: _&f 13.7 LET US SUM UP
N9

®  The value of determinant is unaltered, when its rows and columns are
interchanged.

® |f any two adjacent rows (columns) of a determinant are interchanged,
then the value of the determinant changes only in sign.

® |f the determinant has two identical rows (columns), then the value of
the determinant is zero.

® |f all the elements in a row or in a (column) of a determinant are
multiplied by a constant k(k > 0) then the value of the determinant is
multiplied by k.

®  The value of the determinant is unaltered when a constant multiple of
the elements of any row (column), is added to the corresponding
elements of a different row (column) in a determinant.

® |f each element of a row (column) of a determinant is expressed as
the sum of two or more terms, then the determinant is expressed as

the sum of two or more determinants of the same order.

13.8 FURTHER READING

1)  Agarwal, D.K. (2012). Business Mathematics, New Delhi: Vrindra
Publication (p) Ltd.

2) Baruah, S. (2011). Basic Mathematics and Its Application in
Economics, New Delhi: Trinity Press Pvt. Ltd.

3) Bose, D. (2004). Mathematical Economics; New Delhi: Himalaya
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Publishing House.

4)  Chiang, A.C. (2006) Fundamental Methods of Economics Analysis;
New Delhi: MC Graw Hill Education India.

5) Kandoi, Balwant (2011). Mathematics for Business and Economics

with Application; New Delhi: Himalaya Publishing House.

A 139 ANSWERS TO CHECK YOUR

PROGRESS
2 -3
Ans to Q No 1: (i) =22+21
7 11
—43.
2443 3+411
” —2+3)2-3)-B+11)3-+11
(||)3_m 2_\/5( X )( X )
=(4-3)-(9-11)
=3.
2 3| [2x -1
Ans to Q No 2: (i) Given, 1 4x: 5
=8x-3=2x"+5
= 2x" —8x+8=0
=x’—4x+4=0
= (x-2)=0
=>x=22.
o x 3 |0 -2
(||)G|ven,4 “hy 5

= x"—12=0+4x

= x"—4x-12=0

= x"—6x+2x-12=0
= x(x—6)+2(x-6)=0
= (x—6)(x+2)=0
=>x=-2,6.

245

Discrete Mathematics



Determinant-|

Unit 13

3 p
4 6

Ans to Q No 3: Given,

=18-4p=6

=-4p=-12

= p=3.

a+ib c+id

c—id a—ib

(a+ib)a—ib)—(c+id)c—id)
S (1 e (Vo)
=a’+b>-c’-d’

Ans to Q No 5: (a) (i) Expanding about the first row

AnstoQNo4:L.HS=

=2(2-1)-1(=1-2)-3(1+4)

=2+3-15
=-10
(ii) Expanding about the first column
2 1 -3
-2 1 1 -3 I -3
1 -2 1|=2 -1 +2
1 -1 p -1 -2 1
2 1 -1
=2(2-1)-1(-1+3)+2(1-6)
=2-2-10
=-10-
(b) Try yourself
(c) Try yourself.
X xz x2
Ans to Q No 6: (a) Given, 39 271=0
-1 -2 -3
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1 x  x?
= 3x| 1 3 91=0
-1 -2 -3
3 9 2
= 3x —3xx X x x*
-2 -3 -2 —3 3 9

= 3x(~9+18)—3x(-3x +2x? )~ 3x(9x —3x%)= 0
= 3x(9+3x—2x" =9x+3x?)=0

= 3x(x* —6x+9)=0

=3x(x-3) =0

=x=0,3

(b) Try yourself.
Answer QNo 7:
3x+5y+0z=8
—X+2y-z=0
3x—6y+4z=1
3 5 0
D=-1 2 -1
3 -6 4
2 -1 -1 -1
=3 -5
-6 4 3 4
=3 (8-6) — 5(—4+3)
=6+5=1120

& 5 0 2 -1 o 1
oo 2 A4 2 1]

1 -6 4

= 8(8-6) —5x1=16-5=11

3 8 0
D,=-1 0 -1
3 1

0o -1 |1 -
4 I

1 4 |3 4
= 3(0+1)-8(—4+3)
=3+8 = 11
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3 5 8
D,=|-1 2
3 -6 1

2 0

-1 0
A 3

-1 2
+8 ‘

6 1 3 1 |3 -6
= 3(2-0) -5(~1-0) +8(6-6)
= 6+5 =11

D, 11

:—:1

D 11

D, 11
:7:—:1
y D 11
_ D _1_,
D 11
ie.x=1, y=1, z=1.
Answer Q No 8:

SoX=

X, +X,+X,= 6
X, = X, + X,;= 2
2X,— X, + 3x,= 9
L 11 1 1 1 —1
D=1 -1 1|=1x 1 3‘—1x‘2 3+ax2 1‘
2 -1 3
= (-3+1)~(3-2)+(-1+2)
=-2-1+1=-2%0
6 11 1 2 1 2 —1
~Dy=2 -1 1=6‘ 1 3‘—1x9 3+1x9 1‘
9 -1 3
= 6(—3+1)—(6-9)+(—2+9)
=-12+3+7=-2
1 6 1
2 9 3
2 1 1 1 1 2
= —6x +
9 3 2 3 2 9
= (6-9) —6(3-2) +(9-4)
=-3-6+5
=-9+5
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=—4
1 1 6

D,=[1 -1 2
2 -1 9
2l po2 -1
=19 2 9 2 -1
= (-9+2) —(9—4) + 6 x(—1+2)
= _7-5+6
= _12+6

B

B |13.10 MODEL QUESTIONS

4 6 3 2 -2 -4
Q1: Evaluate (i) |_, 5f ()|, s (i), _g

._.
N
[
oS = O

0
Q2: Evaluate (i) 3 - (ii) 0
1 2 4 1

Q 3: Show that

a+b b+c c+a a b c
b+c c+a a+bl=2b ¢ a
c+a a+b b+c c a b

Q 4: Show that
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1 1 1
a b c|l=(b-a)c—a)a-b)a+b+c)
a b c
b*c*> bc b+c
2 2 —
Qs: Showthat|© ¢ 4 ¢4 =0
a’b’> ab a+b
a b c
Q6: Show that |4 € b—c c—al=a’+b’+c’ -3abc
b+c c+a a+b
x+a b c
Q7: Provethat| ¢ x+b ¢ |=x'(x+a+b+c)
a b x+c
1 1 1
Q 8: Show that lvx 1 =xy
I 1 1+y
Q 9: Without expanding the determinant, prove that
a-b b-c c—a
b-c c—a a-b=0
c—a a-b b-c
Q10: Solve using Cramer’s rule
2x+3y+z=9
X+2y+3z=6
3x+y+2x=28
sk kokokdok oKk
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UNIT STRUCTURE

14.1
14.2
14.3

14.4

14.5
14.6
14.7
14.8

Learning Objectives

Introduction

System of n Non-Homogeneous Linear Equation in n Unknowns
13.3.1 Condition for Existence of Unique Solution

13.3.2 Solution by Cramer’s Rule

13.3.3 lllustrative Examples

System of m Non-Homogeneous Linear Equations in n
unknowns

14.4.1 Consistent and Inconsistent System

14.4.2 Equivalent Systems

14.4.3 Homogeneous System

14.4.4 Solution by Gaussion Elimination Method

14.4.5 lllustrative Examples

14.4.6 Solutions of Homogeneous System

Let Us Sum Up

Answers to Check Your Progress

Further Readings

Model Questions

14.1 LEARNING OBJECTIVES

After going through this unit, you will be able to

write a system of linear equations in matrix form

know condition for existence of unique solution of n linear
equations in n unknowns.

solve n linear equations in n unknowns by Cramer’s rule
know consistent and inconsistent system of m linear equations
in n unknowns

solution of linear equations by Gaussian elimination method.
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14.2 INTRODUCTION

We are familiar with the method of solution of two linear equations
in two variables. The equations ax + by = ¢, px + qy = d can easily be
solved by the method of elimination of one of the two variables. But the
method is difficult to work with when the number of variables and number
of equations are more than two. It becomes more difficult when the number
of equations and the number of variables are not equal. In this unit we
shall discuss method of solution of such a system of linear equations,
converting the system of equations to matrix form and then solving by

applying Cramer’s rule and the Gaussian elimination method.

14.3 A SYSTEM OF n LINEAR NON-HOMOGENEOUS
EQUATIONS IN n UNKNOWNS

A system of equations
a11)(1 + a12)(2 toot a1an = b1

a21X1 + a22)(2 toof a2nxn = b2

an1X1 + an2x2 to.t annxn = bn

is called a system of n non-homogeneous linear equations in n
unknowns [where b, a, € R or any field F].

Let A be the matrix of the coefficients of the unknowns, X be the
column matrix of the unknowns and B be the column matrix of the right

hand side constants. That is,

X b,
X2 b2
A=[a],. X=|1] B=]
X, b,

It can be easily verified that the system (1) can be written as a

matrix equation AX =B ......... (2)
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For example, the equations x—-z=1
2x+y—-z=1
X+2y+5z=2

can be written as AX = B, where

10 -1 X 1
a2 1 1 xo|Y] g2
12 5 z 2

14.3.1 Condition for Existence of Unique Solution

Theorem : The system of equations AX = B has a unique solution
if |A| # 0, i.e., Ais a non-singular matrix.
Proof : Let |A| # 0. Then A" exists and AA-' =1 =A"A ...... (1)
Now AX =B
< AT(AX)=A'B
< (ATA)X=ATB
< IX=A"B, by (1)
< X=A"B.
This shows that A-'B is a solution of the system AX = B.
To prove uniqueness, let us assume that X, and X, are two
solutions of the system.
Then AX, =B, AX,=B
< AX, =AX,
< AT(AX,) = AT(AX)
< (ATAX, = (ATA)X,
< IX, =1X,, by (1)
< X, =X,
This shows that the system AX = B has a unique solution.
Example : Let us consider the equations
XxX—z=1,
2x+y—z=1,
X+2y+5z=2
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The matrix form is AX = B where

10 -1 X 1
A= 2 1 -1 , X = y ,B= 1 .
12 5 z 2
10 -1
Al=12 1 N = )00y 14-1) =4
12 5

Since |A| # 0, the system has a unique solution given by

1
X =AB= [ -(adiAB
. dj A)B
_4(a.l)
7 -2 1
Now, adjA = -11.6 - (workout yourselves)
3 -2 1
7 -2 1|1
1(_ _
Oy -1 e )
413 2 1|2
7
7 2 +2] |4
_1l-11 46 2| _ |72
413 2 42 3
L 4
7
4
X 7
_lyl-| 4
Thus =
z| |3
L 4
oo T v T 3
encex—4,y——4,z—4.
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14.3.2 Solution by Cramer’s Rule

Let us counsider the n equations in n unknowns
a11X‘1 + a12X2 tot a‘lan = b1

a21x1 + a22)(2 toot aZan = b2

an1X1 + an2X2 tot annxn = bn

In matrix notation, the system of equations is equivalent to

AX =B
iy 8 .. 8y
aZ1 a22 aZn
Where A=[a],, =

an1 an2 ann

X b,

X2 b2

X = andB = | :

Xy b,

If |A] # 0, then by theorem 1 the unique solution is given by

1
X =A"B= > (adjA)B

|Al
Ci1 Gy o Gy b,
1 Cy, Cyp ... Cop b,
= ... . . x|,
|Al
C1n C2n Cnn bn
where c, = cofactor of a, in A.
X, ] [Cib, +Cpb, +...+C b, ]
X, C,,by +Cob, + ...+ C LD,
1
Thus. | % | = — | Ciby +Coby + ... +C b,
S |Al
X, | C.iby +C b, +...+C b
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Hence, x, = |A| (c,b, +c,b,+..+cb)fori=1,2, ..,n

e, x, = szCJI wherei=1, 2, .
A4

From properties of cofactors we know that

a;,; a, .. a; .. a,
n Ay, Ay, ... Ay .. A,
2.8;C; = |A| =
j=1
a, a, .. a; .. a,
Hence replacing a, by bj on both sides forj=1, 2, ..., n; we get
a;; a, .. b, .. a,
n ay, Ay, ... by ... a,
>b
j=1
a, a, .. b, .. a,
n
or, 2bic; = Al

=1
where A is obtained from metrix A by replacing the i"" column by the

b,

b,
column | :

b,

| h d 1A lAI
n otherwords, x. =
INVXE A RTY

Hence the solution sof the system (1) are given by

_ Al 1A, | _ A - | Al
AR A T A e T AL

This method of solution is known as Cramer’s Rule.

14.3.3 lllustative Examples

Example 1 : Solve by Cramer’s rule :

X—y+2z=1
2x+y+z=2
x-3y+z=1
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1 1 2
Solution : A= 2 1.1
1 -3 1
17 -1 2
oAl = 2 11 =-9
1 -3 1

As |A| # 0, unique solution exists, where

AL AL A
A’Y T AT A

1 -1 2
Now A= 1 =g
1 -3 1
11 2
2 2 1
A, = =0
11 1
1 -1 1
2 1 2
INE =0
1 -3 1
H B
ence x—_g—,
0,
y=—4 =0,
-0 .
Z—_9— .

Example 2 : Solve by Cramer’s rule :
X, + X, —2X, =1
2X, —7x,=3

&+@—&=5
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N

Solution : |A| =

A, =

Al =

Al =

The solutions are X, =

1 -2
0 -7__,
1 -1
1 -2
0 —7 - _34
1 -1 ’
1 -2
3 T _y3
5 _1 ’
1 1
0 3 _ g
15
1Al _ 31
Al 27
1A 13
LT AT 2
1A,]
x3—IAI =4,

Example 3 : Solve by Cramer’s rule :

x1+x2+x3+x4=2

x1+2x2+3x3+4x4=2

2x1 +3x2+5x3+9x4=2

x1+x2+2x3+7x4=2

Solution : |A] =

_ N A

111 1000

2 34 1123

35 9= 137,

127 1016
byC,—>C,-C,,C,»C,-C,,C,>C,—C,
123 123

137 0145 g
016 016
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10 0 O
1

1

1

12 3 4

2

2 2 3 4

2 3 5 9=213 5 9=212 4 8

Al

=4

4.(0-1)

13

2 3 4

1

=12 2 5 9 =22 15 9

Al

1 2

2 27 N

1

1.0 0O
1.0 2 3

= 2.(=1)(-1)(12=3) = 18

2 2 4 12 1 4

1

=2 3 2 9 =22 3 109

Al

M N~ ©
o Y o Q_
- v« O 1l
N ©
I L
N
o M M~ © 0
0040 M <+ ©
O+« v« O © Y o
~ v (N - O O
N N
1l
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11 1 2 171 1 1 10 0 O
1 2 3 2 1 2 3 1 11 2 0
Al =2 3 5 2=2]2 3 5 1=22 1 3 —1
11 2 2 11 2 1 101 O
12 0 1 2 0
_o|1 3 -1 0 1
01 0 01 0
=2.(0+1) =2
Al 4
A 2~
1A,| 18
X, A ?—9,
1A _ 12
x3—||— 2——6,
Al 2

Example 4 : Investigate existence of solution of the system
2X, +4x, - X, =4
X, +2X,—2X, =5

x1+2x2—x3=—1

2 4 1 2 2 -1
Solution: A = |V 2 =2/ 1 24 -20-0
1 2 -1 11 -1

Since |A| = 0, Cramer’s rule cannot be used to solve the
system. In fact, the system is inconsistent and has no solution.
Because, subtracting 3 times the third equation from the sum of

the first two equations we get 0 = 12, an absurdity.

260

Discrete Mathematics



System of Linear Equations Unit 14

e
/

[
~ /-

A\

CHECK YOUR PROGRESS

Q.1. Express in matrix form AX = B, examine uniqueness of
solution and then solve calculating A=' where ever unique

solution exists :

i) 10x—15y=0 i) 3x+2y—-2z=1
3x—4y =1 —X+y+4z=1
2x—3y+4z=8

iii) 7x, +6x, +5x, =1
X, *+ 2%, + X, = —1

3x1—2x2+x3=4

Q.2. Solve by Cramer’s rule :

i) 2x—y+3z=9 i) 2x, +Xx,+ 39X, +X, =95
X+y+z=6 X, + X, — 3%, — 4x, = —1
X—y+z=2 3x, + 6x,—2x,+x,=8

2x1 + 2x2 + 2x3—3x4 =2
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14.4 A SYSTEM OF m NON-HOMOGENEOUS
EQUATIONS IN n UNKNOWNS

A system of equations :
a11X1 + a12X2 tot a1an = b1

a21X1 + a22)(2 toof a2nxn = b2

am1x1 + am2x2 ot aman = bm
where aj; b, € R or any field F, is called a system of m non-

homogeneous equations in n unknowns. The system can be written as :

28X =b, (i=1,2,...m)
=1

a11 a12 a1n

8y 8y aon
The matrix A = [aij]mxn =

8, A e e . @,

is called the co-efficient matrix, and the matrix

a11 a12 a1n b1

az1 a22 e a2n b2

(AIB) = (a,[0) e =
_am1 am2 amn bm_

is called the augmented matrix of the system. Sometimes the last
two columns of (A|B) are separated by a dotted line which is not obligatory.
An n-tuple (a,, a., ..., o ) which satisfies each of the m equations in

(1) is called a solution of the equations.

14.4.1 Consistent and Inconsistent System

The system of equations :

n
2.3X =b, wherei=1,2, ., m

=1
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is called a consistent system if it has at least one set of
solution, otherwise the system is called inconsistent.
Example 1 : The system x + 2y — 3z -4t =2
2x+4y -5z -Tt=7
-3x—-6y+11z+14t=0
is a consistent system, since (3, 4, 3, 0) is a solution of the system.
Exampe 2 : The system Xx, +2x,—3x, +4x, =2
X, + 4x, —7x, = =3
2x, + 8x, — 14x, =3
is inconsistent, because subtracting twice the second equation from
the third we shall get 0 = 9, an absurdity. So the system has no

solution.

14.4.2 Equivalent Systems of Equations

The system of equations :

iXj = b, (i=1,2,..,m)

2.a
=1

and Z Xi=b, (=12, ..,m)
=1

are said to be equivalent if every solution of one system is also a
solution of the other system.
Example : The systems of equations x, — 2x, — 3x, = 4
2X, — 3%, + X, =5

and the system x, + 11x, = -2

X, + 7TX, = -3
are equivalent. It can be verified that any set of solution of one
system is also a solution of the other system. For example (9, 4, —

1) is a solution of both the systems.

14.4.3 Homogeneous System of Equations

The system of equations :

8% = b, (i=1,2,..m)
i=1
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is called a homogeneous system if b=0 fori=1,2, ..., m. Inother-
words,

n
23X =0,(=1,2,...m)

j=1
is @ homogeneous system.
Obviously, (0, O, ..., 0) is a solution of any homogeneous

system of equations. It may have other solutions also.
Example : x, +2x,—x,=0

2x, +5x, +2x, =0

X, +4x,+7x,=0

X, + 3x, + 3x, = 0 is a homogeneous system.

i) (0, 0, 0) is a solution of the system.

i) (9,4, 1) is another solution of the system.

14.4.4 Gaussian Elimination Method of Solution

The Gaussian elimination method of solving a system of
linear equations is based on the following theorem, stated without

proof.

n
Theorem : If Zaijxj =b, (i=1,2, .., m)be a system of linear
=1

equations with augmented matrix (A[B) = (a;|b) and (R|S) = (p,[3)

be its reduced echelon matrix, then the system

z PiX; = 8 (i=1,2,...,n)is equivalent to the original system.
=1

Thus, to solve a system of linear equations, its augmented
matrix should be transformed into a reduced echelon matrix (or,
row canonical form). Then the solution of the system determined
by this reduced echelon matrix is also a solution to the original

system.

GAUSS ELIMINATION METHOD FOR REDUCTION OF THE
AUGMENTED MATRIX : The Gaussian elimination method for
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reducing the augmented matrix (A|B) to the row canonical form (R|S)

is as follows :

Step 1 : Firstreduce (A|B) to an echelon form. If the echelon matrix
has a row (0, 0, ..., 0, b) where b = 0, then the system of
equations is inconsitent, i.e., no solution exists. Otherwise,
we follow step-2.

Step 2 : Let R,, R,, ..., R be the non-zero rows in the echelon
matrix with leading entries o, , a,; , ..., o; respectively.
If a; =1, make it 1 by the elementary row operation

1

~ R. Now produce as above o,; =1 by applying

s

Rr—>a

row operationson R, R,, ..., R

r—1°

Step 3 : Repeat step-2 in succession withR _,, R _,, ..., R,. Finally,
1
if necessary, multiply R, by ; to make a;;, =1.
I
The matrix is row in row canonical form, from which we find

the solution of the equivalent system, and hence the solution of

the original system.

14.4.5 lllustrative Examples

Example 1 : Solve by Gaussian elimination method :
X—2y+z=7
2x—y +4z =17
3x—-2y+2z=14

Solution : We change the augmented matrix (A|B) to echelon form

and then to row canonical form as follows :

1 217
2 1 4 17
(AlB)=
3 2 2 14
1 2 1 7
0 3 2 3
~_0 w4 7| R ReRR SRR
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1.2 1 7
o3 2 o3 4l
0 o - _qq 7B
i 3

1 2 1 7

3

03 23/, 3

0 0 13 11

1 -2 0 4
~8 3 ? _33 ,R, > R-R, R, »>R~2R,
1 2 0 4

0 1 0 -1
~ ,R,»> =R

0 0 1 3] 3°
10 0 2
0T 0 MR LR 2R
001 3

which is in row canonical form. This give the equivalent system of

equations

= =>x=2,y=-1,z=3
3

O O -

O A~ O

-~ O O

N < X
|

Hence (2, —1, 3) is the unique solution of the given system
of equations.
Example 2 : Solve the system :
X+2y—-3z-4t=2
2x+4y -5z -7t=7
3x+6y—-11z-14t=0
Solution : We reduce the augonented matrix to echelon form and

then to row canonical form :
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12 3 4 2
2 4 5 -7 7
3 6 -11 -14 0

12 3 4 2
~|00 1 1 31 R ,R-2R,R,->R 3R
00 2 2 -6

1

~ , R, > R,+2R
o0 0 o0 of > ° °?
1 2 0 -1 11

(00113 R, > R+3R,
000 0 O

which is in row canonical form. This equivalent system is

X
120 A | (1
00 1 1{|_|_|3
000 o),] (o0

= x+2y—-t=11,z+t=3
= x=M1M-2y+t,z=3-1t
Taking arbitrary values y = o, t = 3 we get
x=M1M-2a+p3, z=3-.

Hence, the system has infinite number of solutions given
by (11 —2a + B, a, 3 — B, B) for arbitrarilly chosen values of o and f.
In particular, taking . = 1, B = 0 we get a solution (9, 1, 3, 0).
Taking o = 0, B = 1 we get another solution (12, 0, 2, 1), etc.

Example 3 : Solve the system :
3X, +4x, — X, +2x, =1
X, —2X, + 3X, + X, = 2

3x1 + 14x2 - 11x3 +X, = 3
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Solution : Augmented matrix :

3 4 1 21
1 -2 3 12
3 14 11 1 3

1 2 3 12
3 4 1 2 1
3 14 11 1 3

1 -2 3 1 2

0 10 -10 -1 -5
~ ,R,>R-3R,R, > R-R
0 10 -10 -1 3 ) =2 2 " @ 0oz

1 -2 3 1 2

|0 10 <10 1 5o g g
00 0 0 7

Itis in echelon form having the row (0, 0, 0, 0, 7). Hence the
system has no solution.
[Note : In fact, the third row gives an equation
0.x,+0x,+0x,+0x,=7
i.e., 0 = 7; hence the system is inconsistent.]
Example 4 : Find the conditions under which the following system
has (i) no solution (ii) a solution :
X+2y—-3z=a
2x+6y—11z=>b
X—-2y+7y=c

Solution : Augmented matrix

1 2 -3 a
_|2 6 -11 b

1 2 7 ¢

1 2 -3 a

0 2 -5 b-2a
~ ,R,->R-2R,R,—>R-R
0 -4 10 c-a 2 2 1 N 3 M
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1.2 -3 a
0 2 -5 b-2a

, R, > R+2R,
0O 0 0 2b+c-5a

The equivalent systemis x+2y—-3z =0
2y-5z =b-2a
0 =2b+c-5a
i) The system will have no solution if 2b + ¢ — 5a = 0.
i) f2b+c—-5a=0,ie., 5a=2b + c, the system will have
solutions given by the equivalent system.
X+2y—-3z =a
2y-5z =b-2a
or,Xx =a-2y+3z
_b-2a+5z
y = 2 .
Taking arbitrarilly chosen values of z and applying the
condition
5a = 2b + c, we shall get in finite number of solutions.
Note : This system cannot have a unique solution.
From the illustrative examples discussed above, it is clear
that for a system of linear equations any one of the following holds :
i) has a unique solution,
i) has no solution

iii) has an infinite number of solutions.

14.4.6 Solutions of the Homogeneous System

For the homogeneous system of linear equations :
n
3% =0, (i=1,2,..,m)
=1
the last column of the augmented matrix has all zeros, and
so, whatever elementary row operations are performed to reduce

the augmented matrix to echelon form, the last column does not
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change. Hence we reduce the cofficient matrix A= (a to canonical

i')an
form to obtain the equivalent system. We explain thJe method in the
following examples.
Example 1 : Solve the system: x+3y—-2z=0

2x-y+4z=0

x—11y+14z=0

1 3 =2
Solution : A= 2 -1 4
1 -11 14
1 3 2
0O -7 8
~ 0 14 16 , R,—> R,—2R,, R, - R-R,
1 3 -2
0O -7 8
~ ,R,—> R-2R
O O O 3 3 2
1 3 -2
1 8 1
~ 7 'R, > -3R,
0O O
10 19
7
8
- 7 . . .
00 o0/ which is in row cononical form.

So, the equivalent system is given by

10 2

0o 1 -8 °
=1 1yl_lo
00 0|l lo
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L1008
= X 7 z=0, y- 7y—
__ o .8
= X=-— 7 zZ, y= 7z.
. . 10 8
Taking z = a, an arbitrary value, we get (—7oc, 70(, o) as

the general solution of the system and hence the system has infinite
number of solutions.
Example 2 : Solve the system : x, + 2x, + x,—3x, =0

2x, +4x, + 3x, +x,=0

3x, + 6x, +4x,-2x,=0

Solution : Coefficient matrix

12 1 -3

A 2|2 43 1

36 4 -2

12 1 -3

001 7
g o 4 7 | R RRRORR,

12 1 -10

001 7
1o 0 0 o [RoRRRORR,

Hence, the system is equivalentto x, +2x,—10x,=0
X, + 71X, =0

Setting x, = a, x, = b,

we get the general solution as (10b — 2a, a, —7b, b)

where a, b are arbitrary. The system has infinite number of solutions.

Example 3 : Find a non-zero solution of the system :
X, =X, +%x,=0
X, +X,+2x,=0

X, +2X,—x,=0
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Solution : The coefficient matrix

1
0
0

0
1
0

1
2
-1
1
1
,R,» R, R, R,—> RR,
-2
1
1
2 ,R,=»> 7R,
-2
3
2
1
27 ,R, > R+R,, R, > R-3R,
2
3
2
! 2
% R,~ ZR,
0
0 3
‘R, >R-5R, R, - RR,
1

Hence the system is equivalent to x, = 0, x, = 0, x, = 0.

In otherwords, the system has unique solution (0, 0, 0) and

it has no non-zero solution.

Note : Asystem of homogeneous linear equations has either

(i) a unique solution (0, 0, 0), called the trivial solution or (ii) an

infinite number of solutions.
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/'

CHECK YOUR PROGRESS

Q.3. Solve by using Gaussian elimination method :

X+2y—-z=3
3x—-y+2z=1
2x—2y+3z=2

X—y+z=-1

Q.4. Examine existence of solution of the system
X+y—-2z+3t=4
2x+3y+3z-t=3
5+ 7y +4z+t=5

Q.5. For what value of a the following system is consistent? Find
solutions when consistent.
X—-y+z=1
X+2y+4z=a

X+ 4 +6z=a
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&

Tk 14.5 LET US SUM UP
\ _,J:

n

[ ] zaijxj = b, where i =1, 2, ..., n is a system of n linear non-
=1

homogeneous equations in n unknowns. In matrix form the system

can be expressed as AX = B,

X1 b1
Xz b,
whereA=[a] ., X=|:|,B=]:
X, b,

® The system AX = B has a unique solution when |A| = 0.

® By Cramer’s rule, the solution of the system is given by x, = |_AI| for

i=1,2,..,n,whereA is obtained from A replacing the i"" column by

1

b,

the column | :
b

n

n
® The system of equations zaijxj =b,wherei=1,2, .., mis called
j=1

a system of a m linear non-homogeneous equations in n unknowns
where A = [a] . is called the Co-efficient matrix and (A|B) =
[a,lb]

® The system is called consistent if it has atleast one soloution i.e.,

1S Called the Augmented matrix.
atleast one n-tuple (a.,, a., ..., o ) which satisfies the equations in

the system, otherwise the system is called inconsistent.

n
® Two systems zaijxj =b
j=1

n
(i=1,2,...m)and 28X =b' (i=1,2,
=1

..., m) are said to be equivalent if every solution of one system is

also a solution of the other system.
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® The system can be solved by reducing the augmented matrix to
echelon form and then to row canonical form using Gaussian
Elimination Method; thereby finding solution of an equivalent system
and hence that of the original system.

® Any one of the following three holds for the system :
i) has a unique solution
i) has no solution

iii) has an infinite number of solutions.

n
® The system of equations Zaijxj =0,wherei=1,2, ..., mis called
=1

a homogeneous system. The system is solved by reducing the co-
efficient matrix to row canonical form.
® A homogeneous system has either (i) a unique solution (0, 0, 0),

called the trivial solution or (ii) an infinite number of solution.

‘{ 14.6 ANSWERS TO CHECK YOUR
PROGRESS

_ _ (10 -5)(x) (O
Ans. to Q. No. 1 :i) Matrix form is 3 —4)ly)7 1

10 -15 X 0
or, AX =B, where A= 3 4 , X = y and B = 1]

10 -15
3 -4

=-40+45=5=0

Al =

So, unique solution exists and is given by X = A-'B.

!

N A—1-id'A— = —1(_4 15]
WA= AN 5145 10) T5(-3 10

-x= 55 10)(3)-50)- )
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() (3)era s

i) Matrix form is AX =B,

3 2 -2 X 1
where A = T 1 4 X = y |3=1
2 -3 4 z 8
3 2 2 16 -2 10
|A|=_1 1 4 = 70, adj A = 12 16 -10
2 -3 4 1 13 5
X 16 -2 10 )\(1
1 _
Hence, | Y| = — 12 16 -10 || 1
z) {1 13 5 /8
47
35
94 26
A |-52| | 35
70 | 54 27
35
LA N 14
~X% 357 3577 35
7 6 5 X, 1
i) AX=B,whereA=|1 2 1| x=[*| g=|"
3 -2 1 X3 4
7 6 5
_12 1 : :
|A] = =0 = the solution does not exist.
3 -2 1
2 13 9 1 3
Ans.to Q. No. 2: i) |A|=1 1 1=—2|A1|=6 1 1=—2
1 -1 1 2 -1 1
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2 9 3 2 19
1 6 1 1 1 6
|A,| = =-4 |A]= =—6
1 2 1 1 -1 2
So, the solutions are x = M = _—2 =1
’ Al 2
1Al 4
YA T 27
LAl 6
Al -2
2 1 5 1 11 -3 4
11 -3 4 2 1 5 1
i) Al=|3 6 2 1|=-[3 6 2 1|,R <R,
2 2 2 -3 2 2 2 -3
1 0 0 O
2 111 9
=-3 3 7 13|;¢c,>»c,—C,c,—>C,+3c,Cc, > C,+4c,
2 0 8 5
-1 11 9
=13 T 132 420
0O 8 5
5 1 5 1 -1 1 -3 4
-1 1 -3 4 5 1 5 1
AlI=]18 6 -2 1/=-18 6 -2 1|,R &R,
2 2 2 -3 2 2 2 -3
1 1 3 4 1 0 0 0
5 1 5 1 5 6 -10 -19
=8 6 -2 1/=18 14 -26 -31;
2 2 2 -3 2 4 4 -1

¢, = ¢,*c,, ¢, = ¢,—3¢c,, ¢, = ¢,~4c,
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6 -10 -19 6 10 19
14 -26 -31_14 26 31
4 -4 -1 4 4 11

3 5 19
7 13 31 _
2 2 11

—240

2 5 5 1 1 -1 -3 4

1 -1 -3 4 2 5 5 1
A=3 8 -2 1|=-3 8 -2 1

2 2 2 3 2 2 2 -3

100 0
2 7 11 9 [
=—[3 11 7 13 =1V 7 13- 5
2 4 8 5 4 85
215 1 |11 -1 4
11 -1 -4 P15 1
Al=3 6 8 1/=-3 6 8 1
22 2 3 |22 2 -3
10 0 0
2 17 9 179
-—3 3 11 13 =-1.[3 1 13 _g
2 0 4 5 0 4 5
215 5/ |22 2 2
113141 P15 5
AJ=3 6 -2 8|=—1 1 -3 1
22 2 2| 36 -2 8
11 1 1 10 0 0
21 5 5 2 1 3 3
=211 1 3 =211 0 -4 -2
36 2 8 3 6 5 5
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-1 3 3

=-2. 0 -4 -2 =-96

3 -5 5
.. The solutions are

X1=W=E=2’ X2_|A| =

Ans. to Q.

6
4l R,—>R~-Z7R, R, >R

l
O O O -

—_
N

2R
=

1
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10 § E
7 7
5 8
"7 7 7
~ 0 1 4l R,»>R-2R,, R, > gRs
0O 0 0 O
10 0 -1
01 0 4
~10 0 1 4
0O 00 O
100 -1
010 4
. The equivalent systemis |0 0 1 YIi=|4
000\ (o
=>x=-1,y=4,z=4.
Ans. to Q. No. 4: Augmented matrix
11 -2 3 4
_ 2 3 3 13
57 4 1 5
11 -2 3 4
-0t 7 -1 -5 R, > R-2R,, R, > R-5R,
0 2 14 14 -15
11 -2 3 4
-0 7 -7 -5 , R, > R—2R,
00 0O 0 -5
It is now in echelon form having a row (0, 0, 0, 0, -5). Hence
the system is inconsistent, i.e., it has no solution.
Ans. to Q. No. 5: Augmented matrix
1711 1
_ 1 2 4 a
1 4 6 a°
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1 -1 1 1
~ 1 2 2 :2‘_11 R, >R-R,R,—>R-R,
1 -1 1 11
a_
_10 11 3 R, > =R,
0 5 5 a*-1
10 2 a+2
3
01 1 %‘1
~ R, > R+R, R, > R-5R
2 R 17N TN 3 1
00 0 3a“-5a+2
3
_ _ a+2
The equivalent systemis x+2z = 3
vy =271
yrz = 3
0 = a®-5a+2
B 3
The system is
i) inconsistent if 3a2—5a +2 =0,
3 _ _3a-5a+2
ii) consistent if T= Oie.,a=1, 3

Case 1:

Case 2:

given by (

Whena=1,wegetx+2z=1,y+2z=0and so, taking z
= o (arbitrary), we get infinite solution given by (1-2a, —

o, o) for arbitrary values of a.

8 1
When a = g,wegetx+z= §,y+z=—§.
Taking z = B (arbitrary), we get another set of infinite solutions
8 . 1
o2 —gB.B).
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14.7 FURTHER READINGS

1. Matrices —J. N. Sharma & S. N. Goel.

2. Linear Algebra, Seymour Lipschutz.

13.8 MODEL QUESTIONS

Q.1. Solve by Cramer’s rule :

i) xX—y+2z=1 i) x+y—2z=1
2x+y+z=2 2x—7z=3
x=3y+z=1 xX+y—-z=5

i) x+2y—-z=3 iv) 3x+2y—-2z=1
3Xx—-y+2z=1 -X+y+4z=13
2x—-2y+3z=2 2x—-3y+4z=8

Q.2. Solve by using Gaussian elimination method :

i) x—4y—-3z=-16 i) x—-2y+z=7
2x+ 7y + 12z =48 2x—y+4z=17
4x -y +6z2=16 3X—2y+2z=14
5x -5y +3z=0

i) x, +2x,—3x, =1 iv) 2x, — 95X, + 3x, —4x, + 2x, = 4
X, —2X, =2 3X, = 7X, + 2x, — 5x, + 4x, =9
2x,—4x, =4 oX, — 10x, — 5x, — 4x, + 7x, = 22.

Q.3. Show that the following equations are inconsistent. Apply Gaussian
elimination on the augmented matrix to show inconsistency.
i) x, +2x,—3x,+4x,=2 i) x+2y-3z2=0
X, + 4x, —7x, = -3 2x+4y -2y =2z
2x, + 8x, —14x, = 3 3x+6y—-4z=3
i)y x+2y—-3z=1
2x + 6y — 11z = -1
X—-2y+7z=8

Q.4. Determine the values of A so that the following system has
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i) aunique solution,
ii) no solution,

i) infinite number of solutions.

a) x+ty—-z=1 b) x+2y+iz=0
2x+3y+Az=3 2x+3y—2z =)\
X+Ay+3z=2 AX+y+A2z=3

Q.5. Find solutions of the following homogeneous systems :
i) x+2y—-3z=0 i) X, +2x,+5x,+2x,=0
2x+ 5y +2z2=0 2x, +4x, + X, —5x, =0
3x-y—-4z=0 X, + 2%, + X, —2X, =0

iii) 2x, +4x,—5x, +3x,=0
3X, + 6x,—7x,+4x,=0

5x1 + 10x2— ‘I1x3 + 6x4 =0

Discrete Mathematics 283



BAOU

Education
for All

A2l

YAl ofld

AL YH dU:
XY YH dU:
ALY UM

(a1, 2gld, ugeuq, leasliag wy
3. GLUOIRALEOL AiGL3sR 2hUA YRARE A,
Al AL wivt HA, A Al Al 2,
el Bl RAd ag ¢l e [BA yot-dit

B WL vl WA, iusA Yl ?
58 Ojg IGISR 58, d AL dIRl eldl;
AREIY oAl UM IR dUH UK
Ha sl M B8l Asaul .

ARAAL HYR dHIR s[OA 2udl 28y
s el G-l 4 U,
ol Al sl 2t AHUAL %d A 8l g2
g Ul ML ¢ AReL B [AMRAL YR,

A$IRAAL Yol U, e B WA
yuidl 2wa ugid Al Uldid AR
AHE 33 elRA sigl QgL 33 asig,

Ll $30A 2uu9L Al

My AR [Anle. ..

(e e (AL ..

My AR (A

O

DR. BABASAHEB AMBEDKAR OPEN UNIVERSITY
(Established by Government of Gujarat)
'Jyotirmay' Parisar,
Sarkhej-Gandhinagar Highway, Chharodi, Ahmedabad-382 481
Website : www.baou.edu.in



	Discrect Math-Block- I
	Discrect-Math_Block -II

